Semi-crystalline thermoplastics are an important class of biomaterials with applications in creating extracorporeal and implantable medical devices. In situ release of nitric oxide (NO) from medical devices can enhance their performance via NO's potent anti-thrombotic, bactericidal, anti-inflammatory, and angiogenic activity. However, NO-releasing semi-crystalline thermoplastic systems are limited and the relationship between polymer crystallinity and NO release profile is unknown.
View Article and Find Full Text PDFA universal method for the detection, quantification, and characterization of polyquaterniums (PQs) in a simple background electrolyte solution and in more complex recreational swimming pool water samples is presented. This method involves the application of polycation-sensitive ion-selective optodes (ISOs) prepared by inkjet printing dinonylnaphthalenesulfonic acid (HDNNS) and chromoionophore I directly onto Whatman qualitative filter paper. No plasticizer or added polymer matrix is required for the fabrication of the sensing layer which is coated on the cellulose fibers of the filter paper.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2017
A general anion-sensing platform is reported based on a portable and cost-effective ion-selective optode and a smartphone detector equipped with a color analysis app. In contrast to traditional anion-selective optodes using a hydrophobic polymer and/or plasticizer to dissolve hydrophobic sensing elements, the new optode relies on hydrophilic cellulose paper. The anion ionophore and a lipophilic pH indicator are inkjet-printed and adsorbed on paper and form a "dry" hydrophobic sensing layer.
View Article and Find Full Text PDF