Publications by authors named "Mollie Holmberg"

Background: Understanding potential trajectories in health and drivers of health is crucial to guiding long-term investments and policy implementation. Past work on forecasting has provided an incomplete landscape of future health scenarios, highlighting a need for a more robust modelling platform from which policy options and potential health trajectories can be assessed. This study provides a novel approach to modelling life expectancy, all-cause mortality and cause of death forecasts -and alternative future scenarios-for 250 causes of death from 2016 to 2040 in 195 countries and territories.

View Article and Find Full Text PDF

The One Health approach integrates health investigations across the tree of life, including, but not limited to, wildlife, livestock, crops, and humans. It redresses an epistemological alienation at the heart of much modern population health, which has long segregated studies by species. Up to this point, however, One Health research has also omitted addressing fundamental structural causes underlying collapsing health ecologies.

View Article and Find Full Text PDF

Dietary restriction (DR) increases lifespan and attenuates age-related phenotypes in many organisms; however, the effect of DR on longevity of individuals in genetically heterogeneous populations is not well characterized. Here, we describe a large-scale effort to define molecular mechanisms that underlie genotype-specific responses to DR. The effect of DR on lifespan was determined for 166 single gene deletion strains in Saccharomyces cerevisiae.

View Article and Find Full Text PDF

There is growing evidence that stochastic events play an important role in determining individual longevity. Studies in model organisms have demonstrated that genetically identical populations maintained under apparently equivalent environmental conditions display individual variation in life span that can be modeled by the Gompertz-Makeham law of mortality. Here, we report that within genetically identical haploid and diploid wild-type populations, shorter-lived cells tend to arrest in a budded state, while cells that arrest in an unbudded state are significantly longer-lived.

View Article and Find Full Text PDF
Article Synopsis
  • Chronological aging in budding yeast cells decreases their replicative lifespan, but the exact reasons behind this are still unclear.
  • Dietary restriction during chronological aging can delay the decline in replicative lifespan for at least 23 days.
  • Cells aged 26 days with the lowest mitochondrial membrane potential surprisingly have the longest replicative lifespan, highlighting the importance of mitochondrial function in aging.
View Article and Find Full Text PDF

Chronological and replicative aging have been studied in yeast as alternative paradigms for post-mitotic and mitotic aging, respectively. It has been known for more than a decade that cells of the S288C background aged chronologically in rich medium have reduced replicative lifespan relative to chronologically young cells. Here we report replication of this observation in the diploid BY4743 strain background.

View Article and Find Full Text PDF