Nanotopographic materials provide special biophysical stimuli that can regulate epithelial tight junctions and their barrier function. Through the use of total internal reflection fluorescence microscopy of live cells, we demonstrated that contact of synthetic surfaces with defined nanotopography at the apical surface of epithelial monolayers increased paracellular permeability of macromolecules. To monitor changes in tight junction morphology in live cells, we fluorescently tagged the scaffold protein zonula occludens-1 (ZO-1) through CRISPR/Cas9-based gene editing to enable live cell tracking of ZO-1 expressed at physiologic levels.
View Article and Find Full Text PDFHyposalivation is commonly observed in the autoimmune reaction of Sjögren's syndrome or following radiation injury to the major salivary glands. In these cases, questions remain regarding disease pathogenesis and effective interventions. An optimized technique that allows functional assessment of the salivary glands is invaluable for investigating exocrine gland biology, dysfunction, and therapeutics.
View Article and Find Full Text PDFTwo common goals of salivary gland therapeutics are prevention and cure of tissue dysfunction following either autoimmune or radiation injury. By locally delivering bioactive compounds to the salivary glands, greater tissue concentrations can be safely achieved versus systemic administration. Furthermore, off target tissue effects from extra-glandular accumulation of material can be dramatically reduced.
View Article and Find Full Text PDF