Publications by authors named "Mollereau B"

Beta-propeller protein-associated neurodegeneration (BPAN) is a rare neurodegenerative disease associated with severe cognitive and motor deficits. BPAN pathophysiology and phenotypic spectrum are still emerging due to the fact that mutations in the (WD repeat domain 45) gene, a regulator of macroautophagy/autophagy, were only identified a decade ago. In the first international symposium dedicated to BPAN, which was held in Lyon, France, a panel of international speakers, including several researchers from the autophagy community, presented their work on human patients, cellular and animal models, carrying mutations and their homologs.

View Article and Find Full Text PDF

Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in , apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein (αSyn) aggregation and associated with abnormalities in lipid metabolism. The accumulation of lipids in cytoplasmic organelles called lipid droplets (LDs) was observed in cellular models of PD. To investigate the pathophysiological consequences of interactions between αSyn and proteins that regulate the homeostasis of LDs, we used a transgenic Drosophila model of PD, in which human αSyn is specifically expressed in photoreceptor neurons.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by the progressive accumulation of neuronal intracellular aggregates largely composed of alpha-Synuclein (αSyn) protein. The process of αSyn aggregation is induced during aging and enhanced by environmental stresses, such as the exposure to pesticides. Paraquat (PQ) is an herbicide which has been widely used in agriculture and associated with PD.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Glial cells are early sensors of neuronal injury and can store lipids in lipid droplets under oxidative stress conditions. Here, we investigated the functions of the RNA-binding protein, SPEN/SHARP, in the context of Parkinson's disease (PD). Using a data-mining approach, we found that SPEN/SHARP is one of many astrocyte-expressed genes that are significantly differentially expressed in the substantia nigra of PD patients compared with control subjects.

View Article and Find Full Text PDF

The establishment of planar cell polarity (PCP) in the Drosophila eye requires correct specification of the R3/R4 pair of photoreceptor cells, determined by a Frizzled mediated signaling event that specifies R3 and induces Delta to activate Notch signaling in the neighboring cell, specifying it as R4. Here, we investigated the role of the Notch signaling negative regulator Numb in the specification of R3/R4 fates and PCP establishment in the Drosophila eye. We observed that Numb is transiently upregulated in R3 at the time of R3/R4 specification.

View Article and Find Full Text PDF

Beta-propeller protein-associated neurodegeneration (BPAN) is caused by mutations in the autophagy gene . In human, BPAN is associated with static encephalopathy in childhood and neurodegeneration in adulthood (SENDA). It has been proposed that WDR45 mutations cause neurodegeneration due to defective autophagy.

View Article and Find Full Text PDF

Translationally Controlled Tumor Protein (TCTP) controls growth by regulating the G1/S transition during cell cycle progression. Our genetic interaction studies show that TCTP fulfills this role by interacting with CSN4, a subunit of the COP9 Signalosome complex, known to influence CULLIN-RING ubiquitin ligases activity by controlling CULLIN (CUL) neddylation status. In agreement with these data, downregulation of CSN4 in Arabidopsis and in tobacco cells leads to delayed G1/S transition comparable to that observed when TCTP is downregulated.

View Article and Find Full Text PDF

In multicellular organisms, cell death is an essential aspect of life. Over the past decade, the spectrum of different forms of regulated cell death (RCD) has expanded dramatically with relevance in several pathologies such as inflammatory and neurodegenerative diseases. This has been paralleled by the growing awareness of the central importance of autophagy as a stress response that influences decisions of cell life and cell death.

View Article and Find Full Text PDF

The tumor suppressor TP53/p53 is a known regulator of apoptosis and macroautophagy/autophagy. However, the molecular mechanism by which TP53 regulates 2 apparently incompatible processes remains unknown. We found that Drosophila lacking p53 displayed impaired autophagic flux, higher caspase activation and mortality in response to oxidative stress compared with wild-type flies.

View Article and Find Full Text PDF
Article Synopsis
  • Dysregulation of lipid metabolism is linked to retinal diseases like age-related macular degeneration and brain disorders such as Alzheimer's and Parkinson's, with lipid droplets (LDs) playing a complex role in cell stress responses.
  • Research using Drosophila and mice reveals that LD accumulation in retinal pigment cells (RPCs) is essential for photoreceptor survival, promoting energy metabolism without toxic effects under normal conditions.
  • However, in scenarios with oxidative stress, like in certain Drosophila mutants, LD accumulation can become harmful, suggesting that the turnover of LDs needs careful regulation to protect retinal neurons.
View Article and Find Full Text PDF

Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic-lysosomal network.

View Article and Find Full Text PDF

Unlabelled: The autophagy-lysosome pathway plays a fundamental role in the clearance of aggregated proteins and protection against cellular stress and neurodegenerative conditions. Alterations in autophagy processes, including macroautophagy and chaperone-mediated autophagy (CMA), have been described in Parkinson disease (PD). CMA is a selective autophagic process that depends on LAMP2A (lysosomal-associated membrane protein 2A), a mammal and bird-specific membrane glycoprotein that translocates cytosolic proteins containing a KFERQ-like peptide motif across the lysosomal membrane.

View Article and Find Full Text PDF

Mitochondria are double-membrane subcellular organelles with highly conserved metabolic functions including ATP production. Mitochondria shapes change continually through the combined actions of fission and fusion events rendering mitochondrial network very dynamic. Mitochondria are largely implicated in pathologies and mitochondrial dynamics is often disrupted upon muscle degeneration in various models.

View Article and Find Full Text PDF

The importance of regulated necrosis in pathologies such as cerebral stroke and myocardial infarction is now fully recognized. However, the physiological relevance of regulated necrosis remains unclear. Here, we report a conserved role for p53 in regulating necrosis in Drosophila and mammalian spermatogenesis.

View Article and Find Full Text PDF

In retinal pigment epithelium (RPE), RPE65 catalyzes the isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol in the visual cycle and controls the rhodopsin regeneration rate. However, the mechanisms by which these processes are regulated are still unclear. Fatty Acid Transport Protein 1 (FATP1) is involved in fatty acid uptake and lipid metabolism in a variety of cell types.

View Article and Find Full Text PDF

In neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy.

View Article and Find Full Text PDF

Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog (Fer1HCH) and Ferritin 2 Light Chain Homolog (Fer2LCH) are further stabilized by disulfide-bridge in the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic strains of Drosophila melanogaster.

View Article and Find Full Text PDF

The dysregulation of lipid metabolism has been implicated in various diseases, including diabetes, cardiopathies, dermopathies, retinal and neurodegenerative diseases. Mouse models have provided insights into lipid metabolism. However, progress in the understanding of these pathologies is hampered by the multiplicity of essential cellular processes and genes that modulate lipid metabolism.

View Article and Find Full Text PDF

We developed a Drosophila model in which the dengue virus NS3 protein is expressed in a tissue specific and inducible manner. Dengue virus NS3 is a multifunctional protein playing a major role during viral replication. Both protease and helicase domains of NS3 are interacting with human and insect host proteins including innate immune components of the host machinery.

View Article and Find Full Text PDF