Disease spread can be affected by pharmaceutical interventions (such as vaccination) and non-pharmaceutical interventions (such as physical distancing, mask-wearing and contact tracing). Understanding the relationship between disease dynamics and human behaviour is a significant factor to controlling infections. In this work, we propose a compartmental epidemiological model for studying how the infection dynamics of COVID-19 evolves for people with different levels of social distancing, natural immunity and vaccine-induced immunity.
View Article and Find Full Text PDFAnimal venoms are a complex mixture of highly specialized toxic molecules. Among them, pore-forming proteins (PFPs) or toxins (PFTs) are one of the major disease-causing toxic elements. The ability of the PFPs in defense and toxicity through pore formation on the host cell surface makes them unique among the toxin proteins.
View Article and Find Full Text PDFBackground: Mpox (monkeypox), a disease historically endemic to Africa, has seen its largest outbreak in 2022 by spreading to many regions of the world and has become a public health threat. Informed policies aimed at controlling and managing the spread of this disease necessitate the use of adequate mathematical modeling strategies.
Objective: In this scoping review, we sought to identify the mathematical models that have been used to study mpox transmission in the literature in order to determine what are the model classes most frequently used, their assumptions, and the modelling gaps that need to be addressed in the context of the epidemiological characteristics of the ongoing mpox outbreak.
Background: Glaucoma is the predominant cause of irreversible blindness, particularly the late presentation. The purpose of this study is to identify the risk factors associated with late presentation in Jimma University Medical Center.
Methods: A case-control study was done among patients newly diagnosed to have open angle glaucoma (of any type) at Jimma University Medical Center from July 2014 - January 2019.
Genetic diversity studies provide important details on target trait availability and its variability, for the success of breeding programs. In this study, GBS approach was used to reveal a new structuration of genetic diversity and population structure of pigeonpea in Benin. We used a total of 688 high-quality Single Nucleotide Polymorphism markers for a total of 44 pigeonpea genotypes.
View Article and Find Full Text PDFWe evaluate the efficiency of various heuristic strategies for allocating vaccines against COVID-19 and compare them to strategies found using optimal control theory. Our approach is based on a mathematical model which tracks the spread of disease among different age groups and across different geographical regions, and we introduce a method to combine age-specific contact data to geographical movement data. As a case study, we model the epidemic in the population of mainland Finland utilizing mobility data from a major telecom operator.
View Article and Find Full Text PDFBackground: Restoration of fertility (Rf) is an important trait for pigeonpea hybrid breeding. Few coarse quantitative trait locus (QTL) studies conducted in the past identified QTLs with large confidence intervals on the genetic map and could not provide any information on possible genes responsible for Rf in pigeonpea. Therefore, a larger population comprising of 369 Fs derived from ICPA 2039 × ICPL 87119 was genotyped with high density Axiom Cajanus SNP Array with 56 K single nucleotide polymorphism (SNPs) for high resolution mapping of Rf.
View Article and Find Full Text PDFHaplotype-based breeding, a recent promising breeding approach to develop tailor-made crop varieties, deals with identification of superior haplotypes and their deployment in breeding programmes. In this context, whole genome re-sequencing data of 292 genotypes from pigeonpea reference set were mined to identify the superior haplotypes for 10 drought-responsive candidate genes. A total of 83, 132 and 60 haplotypes were identified in breeding lines, landraces and wild species, respectively.
View Article and Find Full Text PDFThis study has identified single-nucleotide polymorphism (SNP) markers associated with nine yield-related traits in pigeonpea by using two backcross populations (BP) developed through interspecific crosses and evaluating them at two locations and 3 years. In both the populations, markers have shown strong segregation distortion; therefore, a quantitative trait locus (QTL) mapping mixed model was used. A total of 86 QTLs explaining 12-21% phenotypic variation were detected in BP-1.
View Article and Find Full Text PDFRice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high-yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security.
View Article and Find Full Text PDFFluctuations in circulating levels of ovarian hormones have been shown to regulate cognition (Sherwin and Grigorova, 2011. Fertil. Steril.
View Article and Find Full Text PDFWe present a case of a mixed glial tumor (oligoastrocytoma) with signet-ring cells. This cellular feature is a rare differentiation in glial tumors of the central nervous system. Histological, immunohistochemical and ultrastructural findings have been analyzed.
View Article and Find Full Text PDF