In this work, a DNPH doped PDMS based membrane was developed to facilitate carbonyl compound derivatization. This membrane delivers DNPH in presence of carbonyl compounds to form hydrazones. Subsequently, the resulting hydrazones are preconcentrated, separated and detected by in-tube solid phase microextraction (IT-SPME) coupled on-line with capillary liquid chromatography (CapLC) with Uv-Vis diode array detection (DAD).
View Article and Find Full Text PDFMonitoring of the accidental presence of gluten (Glu), resulting from cross-contamination, is imperative in different industries, in particular food industry. The objective of this study was the development of an analytical platform utilizing thin-layer chromatography (TLC) with colorimetric read-out for making binary (yes/no) decisions on surfaces and/or point of these industries. The composition of the extractive phase was optimized with commercial products used in cleaning processing lines.
View Article and Find Full Text PDFIn the present work, a procedure based on a dispersive medium for carbon black (CB) isolation from soil samples for analysis was proposed for the first time. Polymeric and biological dispersants and a sequential use of both dispersants were assayed. Asymmetrical flow field flow fractionation with dynamic light scattering detector (AF4-DLS) and sedimentation field flow fractionation with multi-angle light scattering detector (SdF3-MALS) were used for CB quantitation and characterization in the achieved dispersions.
View Article and Find Full Text PDFA chromatographic system based on in-tube SPME coupled to capillary LC-DAD has been used to study the synthesis of silver nanoparticles using polyphenols in different scenarios: excess of the reducing agent or of the silver salt, addition of the cationic surfactants, and thermal synthesis. The optimized synthesis conditions allowed to quantify the polyphenols used as reducing agents, such as Trolox and chlorogenic acid. Two chromatographic peaks with different absorption spectrum were monitored during the syntheses.
View Article and Find Full Text PDFCarbon black nanomaterial (CB-NM), as an industrial product with a large number of applications, poses a high risk of exposure, and its impact on health needs to be assessed. The most common testing platform for engineered (E)NMs is in vitro toxicity assessment, which requires prior ENM dispersion, stabilization, and characterization in cell culture media. Here, asymmetric flow field-flow fractionation (AF4) coupled to UV-Vis and dynamic light scattering (DLS) detectors in series was used for the study of CB dispersions in cell culture media, optimizing instrumental variables and working conditions.
View Article and Find Full Text PDFThe potential of antioxidants in preventing several diseases has attracted great attention in recent years. Indeed, these products are part of a multi-billion industry. However, there is a lack of scientific information about safety, quality, doses, and changes over time.
View Article and Find Full Text PDFA new approach based on the use of polydimethylsiloxane (PDMS) membranes doped with Griess reagents for in situ determination of NO2- and NO3- in real samples is proposed. The influence of some doping compounds, on the properties of the PDMS membranes, such as tetraethyl orthosilicate (TEOS), or/and ionic liquids (OMIM PF) has been studied. Membrane characterization was performed.
View Article and Find Full Text PDFCharacterization of carbon black (CB) nanomaterials is required in industrial and research areas. Hence, in this study, asymmetrical flow field flow fractionation coupled to UV-vis and DLS detectors in series (AF4-UV-vis-DLS) was studied to evaluate the CB dispersion behavior in polymeric and biological dispersants, given the relevance of these media in practical applications. Under the experimental conditions, the results indicated that polymeric and biological dispersions showed size distributions with hydrodynamic diameters of 404 and 175 nm, respectively, for a particle core diameter of 40 nm.
View Article and Find Full Text PDFThe development of in situ analytical devices has gained outstanding scientific interest. A solid sensing membrane composed of 1,2-naphthoquinone-4-sulfonate (NQS) derivatizing reagent embedded into a polymeric polydimethylsiloxane (PDMS) composite was proposed for in situ ammonium (NH) and urea (NHCONH) analysis in water and urine samples, respectively. Satisfactory strategies were also applied for urease-catalyzed hydrolysis of urea, either in solution or glass-supported urease immobilization.
View Article and Find Full Text PDFColorimetric localized surface plasmon resonance (LSPR) as analytical response is applied for a wide number of chemical sensors and biosensors. However, the dependence of different factors, such as size distribution of nanoparticles (NPs), shape, dielectric environment, inter-particle distance and matrix, among others, can provide non-reliable results by UV-vis spectrometry in complex matrices if NP assessment is not carried out, particularly at low levels of analyte concentrations. Miniaturized liquid chromatography, capillary (CapLC) and nano (NanoLC), coupled on line with in-tube solid phase microextraction (IT-SPME) is proposed for the first time for both, controlling suitability of used noble metal NP dispersions and developing plasmonic assays.
View Article and Find Full Text PDFAsymmetrical flow field-flow fractionation (AF4) coupled to UV-Vis and dynamic light scattering (DLS) detectors in series, was tested for stability studies of dispersions of citrate-capped silver nanoparticles (AgNPs) in several water matrices. The main goal is to provide knowledge to understand their possible behavior in the environment for short times since mixturing (up to 180 min). Ultrapure (UPW), bottled (BW1, BW2), tap (TW), transitional (TrW) and sea water (SW) matrices were assayed.
View Article and Find Full Text PDFA composite membrane containing 1,2-naphthoquinone-4-sulfonic acid sodium salt (NQS) embedded in an ionic liquid (IL)- polydimethylsiloxane (PDMS)- tetraethyl orthosilicate (TEOS)- SiO nanoparticles (NPs) polymeric matrix is proposed. The selected IL was 1-methyl-3-octylimidazolium hexafluorophosphate (OMIM PF6). It is demonstrated that ILs chemical additives of PDMS influenced the sol-gel porosity.
View Article and Find Full Text PDFAmong different nanomaterials, gold and silver nanoparticles (AuNPs and AgNPs) have become useful tools for a wide variety of applications in general, and particularly for plasmonic assays. Particle size and stability analysis are key elements for their practical applications since the NPs properties depend on these parameters. Hence, in the present work, asymmetrical flow field flow fractionation (AF4) coupled to UV-Vis and dynamic light scattering (DLS) detectors in series, has been evaluated for stability studies of citrate-capped AuNPs and AgNPs aqueous dispersions.
View Article and Find Full Text PDFIn the present work, the footprint of carbonyl compounds in hand scent was achieved by a miniaturized method consisting of sampling with cotton gauze, extraction and derivatization using 2,4-dinitrophenylhydrazine (DNPH) and preconcentration, separation and detection by in-tube solid-phase microextraction (IT-SPME) coupled to nano-liquid chromatography/Uv-vis diode array detection. The coupling IT-SPME-nanoLC-DAD was solved by using a two-valve system: the first valve for loading the sample and the second one to perform IT-SPME. To this aim, a nanoparticle-based capillary column was employed.
View Article and Find Full Text PDFThis tutorial aims at providing guidelines for analyzing metallic nanoparticles (NPs) and their dispersions by using methods based on miniaturized liquid chromatography with diode array detection (MinLC-DAD) and coupled on-line to in-tube solid-phase microextraction (IT-SPME). Some practical advice and considerations are given for obtaining reliable results. In addition, this work outlines the potential applications that set these methodologies apart from microscopy-related techniques, dynamic light scattering, single particle ICP-MS, capillary electrophoresis, field-flow fractionation and other chromatographic configurations, which are discussed and mainly seek to accomplish size estimation and NP separation, speciation analysis and quantification of mainly AgNPs and AuNPs.
View Article and Find Full Text PDFThe capacity of different soils to capture silver nanoparticles (AgNPs) by measuring changes of an AgNP intrinsic property such as the plasmon for the first time, was studied. In-tube solid-phase microextraction (IT-SPME) coupled on-line to capillary liquid chromatography (CapLC) with diode array detection (DAD) was employed for measuring the interactions between soil and in-contact AgNP dispersions. Its achieved LOD 9 pM assures quantitative retention measurements and selectivity for soil lixiviation was suitable.
View Article and Find Full Text PDFMeropenem is a widely used antimicrobial for the treatment of infections associated with the use of invasive medical devices in intensive care unit patients. These treatments are not always effective, in fact, in-vitro studies have demonstrated the difficulty of antimicrobials to penetrate into the biofilm, however in-vivo studies of the effect of these compounds is a trend, mostly because of the complexity of pulmonary samples extracted from ETTs. Therefore, the objective of this study was to evaluate in-tube solid phase microextraction (in-tube SPME) coupled to capillary liquid chromatography (CapLC) with DAD to determine meropenem in ETTs in order to estimate the penetration capability into the biofilm.
View Article and Find Full Text PDFIn-tube solid-phase microextraction (IT-SPME) coupled to miniaturized liquid chromatography (LC) techniques are attractive mainly due to the column efficiency improvement, sensitivity enhancement and reduction of solvent consumption. In addition, the nanomaterials based sorbents can play a key role in the improvement of the extraction efficiency taking into account their interesting physical and chemical properties. Thus, in this work the performance of IT-SPME coupled to nano LC (NanoLC) has been compared with the performance of IT-SPME coupled to capillary LC (CapLC) with similar configurations for the determination of polar triazines including their degradation products.
View Article and Find Full Text PDFWe report the use of a chiral Cu(II) 3D metal-organic framework (MOF) based on the tripeptide Gly-l-His-Gly (GHG) for the enantioselective separation of metamphetamine and ephedrine. Monte Carlo simulations suggest that chiral recognition is linked to preferential binding of one of the enantiomers as a result of either stronger or additional H-bonds with the framework that lead to energetically more stable diastereomeric adducts. Solid-phase extraction of a racemic mixture by using Cu(GHG) as the extractive phase permits isolating >50% of the (+)-ephedrine enantiomer as target compound in only 4 min.
View Article and Find Full Text PDFIn this work, in-tube solid phase microextraction (in-tube SPME) coupled to capillary LC (CapLC) with diode array detection has been reported, for on-line extraction and enrichment of booster biocides (irgarol-1051 and diuron) included in Water Frame Directive 2013/39/UE (WFD). The analytical performance has been successfully demonstrated. Furthermore, in the present work, the environmental friendliness of the procedure has been quantified by means of the implementation of the carbon footprint calculation of the analytical procedure and the comparison with other methodologies previously reported.
View Article and Find Full Text PDFA novel and low-cost colorimetric sensor for the determination of hydrogen sulphide in environmental samples has been developed. This sensor is based on the immobilization of the reagent N,N-Dimethyl-p-phenylenediamine and FeCl3 in paper support, in which the H2S is adsorbed in order to give rise to the formation of methylene blue as reaction product. The sensor has been applied to determine H2S in water and air samples.
View Article and Find Full Text PDFThe utility of matrix solid phase dispersion (MSPD) for the direct analysis of amphetamines in hair samples has been evaluated, using liquid chromatography (LC) with fluorescence detection and precolumn derivatization. The proposed approach is based on the employment of MSPD for matrix disruption and clean-up, followed by the derivatization of the analytes onto the dispersant-sample blend. The fluorogenic reagent 9-fluorenylmethyl chloroformate (FMOC) has been used for derivatization.
View Article and Find Full Text PDFFollowing the present trends in miniaturization, a methodology that combines on-line In-Tube Solid-Phase Microextraction (IT-SPME) with Liquid Nanochromatography (nano-LC) and UV-vis diode array detection (DAD) was developed. This coupling was achieved by using two interconnected valves (i.e.
View Article and Find Full Text PDFCurrently, transmission electron microscopy (TEM) is the main technique for estimating the sizes of spherical nanoparticles (NPs) and through them, their concentrations. This paper demonstrates for the first time that C18 reversed-phase capillary liquid chromatography (Cap-LC) coupled to diode array detection (DAD) has the potential to estimate mean concentrations of silver nanoparticles (AgNPs) and thereby determine their average size. Direct injection of the sample without previous extraction or separation steps is carried out.
View Article and Find Full Text PDFA colorimetric composite device is proposed to determine the widely used biocide N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine (ADP).This sensing device is based on a film of 1,2-Naphthoquinone-4-sulfonate (NQS) embedded into polydimethylsiloxane-tetraethylortosilicate-SiO2 nanoparticles composite (PDMS-TEOS-SiO2NPs). Semiquantitative analysis can be performed by visual inspection.
View Article and Find Full Text PDF