We report the results of attaching the anticancer drug chlorambucil (CLB) to two high-affinity DNA binding peptides: Met-Hyp-Arg-Lys-(Py)4-Lys-Arg-NH2 (HyM-10) and Gln-Hyp-Arg-Lys-(Py)4-Lys-Arg-NH2 (HyQ-10). These CLB-peptide conjugates cleave DNA very effectively and sequence-selectively without the use of chemicals, heat, or UV irradiation. Polyacrylamide gel electrophoresis identifies the sites where CLB-HyM-10 and CLB-HyQ-10 attack a complementary pair of 5'-(32)P-labeled duplexes derived from pBR322 in the absence of piperidine or other chemical additives.
View Article and Find Full Text PDFThis study aims to interpret the energetic basis of complex DNA-peptide interactions according to a novel allosteric interaction network approach. In common with other designed peptides, five new conjugates incorporating the XPRK or XHypRK motif (Hyp = hydroxyproline) attached to a N-methylpyrrole (Py) tract with a basic tail have been found to display cooperative binding to DNA involving multiple monodentate as well as interstrand bidentate interactions. Using quantitative DNase I footprinting it appears that allosteric communication via cooperative binding to multiple sites on complementary DNA strands corresponds to two different types of DNA-peptide interaction network.
View Article and Find Full Text PDF