Immunomodulatory peptides, while exhibiting potential antimicrobial, antifungal, and/or antiviral properties, can play a role in stimulating or suppressing the immune system, especially in pathological conditions like breast cancer (BC). Thus, deregulation of these peptides may serve as an immunotherapeutic strategy to enhance the immune response. In this meta-analysis, we utilized single-cell RNA sequencing data and known therapeutic peptides to investigate the deregulation of these peptides in malignant versus normal human breast epithelial cells.
View Article and Find Full Text PDFMost plant and bacterial toxins are highly immunogenic with non-specific toxic effects. Human ribonucleases are thought to provide a promising basis for reducing the toxic agent's immunogenic properties, which are candidates for cancer therapy. In the cell, the ribonuclease inhibitor (RI) protein binds to the ribonuclease enzyme and forms a tight complex.
View Article and Find Full Text PDFBackground: Lactoferrin is a versatile protein with important modulatory functions in inflammation and immune response. This glycoprotein can bind and sequester iron and LPS, thereby intervening in certain signaling pathways and biological processes. In the present meta-analysis, we aimed to pool experimental data regarding the immunomodulatory effects of lactoferrin and its derived peptides on the NF-κB signaling pathway.
View Article and Find Full Text PDFThe use of anticancer peptides (ACPs) as an alternative/complementary strategy to conventional chemotherapy treatments has been shown to decrease drug resistance and/or severe side effects. However, the efficacy of the positively-charged ACP is inhibited by elevated levels of negatively-charged cell-surface components which trap the peptides and prevent their contact with the cell membrane. Consequently, this decreases ACP-mediated membrane pore formation and cell lysis.
View Article and Find Full Text PDFBackground: Lactoferrampin (LFampin), Lactoferricin (LFcin), and LFchimera are three well-known antimicrobial peptides derived from Lactoferrin and proposed as alternatives for antibiotics. Although the intracellular activity of these peptides has been previously demonstrated, their mode of action is not yet fully understood. Here, we performed a molecular dynamics simulation study to understand the molecular interactions between camel Lactoferrin derived peptides, including CLFampin, CLFcin, and CLFchimera, and DNA as an important intracellular target.
View Article and Find Full Text PDFBMC Vet Res
November 2019
Background: Designing a potent recombinant vaccine, using the appropriate subunits with the greatest effect on stimulating the immune system, especially in the case of intracellular pathogens such as gram negative Brucella Melitensis bacteria, is of great importance. In this study, three repeats of 27 amino acids of the immunogenic epitope derived from OMP31 antigen (3E) from the Brucella melitensis, in a protective manner against Brucellosis have been used. To fortify the delivery system of recombinant antigens, IL-2 cytokine as a molecular adjuvant was fused to recombinant constructs.
View Article and Find Full Text PDFObjectives: Brucellosis is a common infectious disease among animals and humans. While subunit vaccines could be used as an efficient strategy against pathogens, they usually seem to be less immunogenic than live or killed vaccines. However, the use of a suitable adjuvant accompanied by subunit vaccines can be a good alternative to enhance the immune response.
View Article and Find Full Text PDFObjectives: The results of studies on vaccine development for foot-and-mouth disease (FMD) virus show that the use of inactivated vaccines for FMD virus is not completely effective. Novel vaccinations based on immuno-dominant epitopes have been shown to induce immune responses. Furthermore, for safety of immunization, access to efficient adjuvants against FMD virus seems to be critical.
View Article and Find Full Text PDFPrevious studies on vaccine development against foot-and-mouth disease (FMD) virus reported that application of the inactivated vaccines for FMD virus is not completely effective. Novel vaccinations based on immune-dominant epitopes showed they induced immune responses. In addition, for better and safer immunization, access to of efficient adjuvants against FMD virus seems to be critical.
View Article and Find Full Text PDFObjective: Two critical points of early development are the first and second lineage segregations, which are regulated by a wide spectrum of molecular and cellular factors. Gene regulatory networks, are one of the important components which handle inner cell mass (ICM) and trophectoderm (TE) fates and the pluripotency status across different mammalian species. Considering the importance of goats in agriculture and biotechnology, this study set out to investigate the dynamics of expression of the core pluripotency markers at the mRNA and protein levels.
View Article and Find Full Text PDFObjectives: Vaccination is one of the most effective means to protect humans and animals against brucellosis. Live attenuated Brucella vaccines are considered effective in animals but they may be potentially infectious to humans, so it is vital to improve the immunoprotective effects and safety of vaccines against Brucella. This study was designed to evaluate the immunogenicity of DNA vaccines encoding outer membrane proteins (Omp25 and Omp31) against Rev1 in a mouse model.
View Article and Find Full Text PDFGenomic prediction using a large number of markers is challenging, due to the curse of dimensionality as well as multicollinearity arising from linkage disequilibrium between markers. Several methods have been proposed to solve these problems such as Principal Component Analysis (PCA) that is commonly used to reduce the dimension of predictor variables by generating orthogonal variables. Usually, the knowledge from PCA is incorporated in genomic prediction, assuming equal variance for the PCs or a variance proportional to the eigenvalues, both treat variances as fixed.
View Article and Find Full Text PDFObjectives: The Streptomyces phage phiC31 integrase offers a sequence-specific method of transgenesis with a robust long-term gene expression. PhiC31 has been successfully developed in a variety of tissues and organs for purpose of in vivo gene therapy. The objective of the present experiment was to evaluate PhiC31-based site-specific transgenesis system for production of transgenic bovine embryos by somatic cell nuclear transfer and intracytoplasmic sperm injection.
View Article and Find Full Text PDFBrucellosis is one the serious infectious diseases caused deleterious health and economic losses. Vaccination with subunit vaccines is the efficient alternative way than live attenuated vaccines against infectious diseases. Herein a new chimeric OMP25-BLS antigen emulsified in Chitosan Nanoparticles was designed and its immune responses were compared with control groups.
View Article and Find Full Text PDFBrucellosis caused by the bacterium Brucella affects various domestic and wild species. The outer membrane proteins 25 and 31 play key roles on stimulation of cell-mediated immune response against Brucella. GroEL as one of the major Brucella antigens stimulates the immune system and increases intracellular survival of bacteria.
View Article and Find Full Text PDFBrucellosis is a well-known domestic animal infectious disease, which is caused by Brucella bacterium. The outer membrane protein 25 kDa (Omp25) gene plays an important role in simulating of TNF-α, IFN-α, macrophage, and cytokines cells. In the current study molecular cloning and expression analysis of Omp25 gene for designing a subunit vaccine against Brucella was investigated.
View Article and Find Full Text PDFObjectives: Enterotoxigenic Escherichia coli (ETEC) strains are one of the primary causes of diarrhea in newborn calves and in humans, pigs, and sheep. IgY technology has been identified as a promising alternative to generating a mass amount of specific antibody for use in immunotherapy and immunodiagnostics. The purpose of this study was to produce specific antibody by egg yolk antibody (IgY) to recombinant FanC protein from ETEC.
View Article and Find Full Text PDFBackground: Little is understood about the regulation of gene expression during early goat embryo development. This study investigated the expression profile of 19 genes, known to be critical for early embryo development in mouse and human, at five different stages of goat embryo development (oocyte, 8-16 cell, morula, day-7 blastocyst, and day 14 blastocyst).
Materials And Methods: In this experimental study, stage-specific profiling using real time-quantitative polymerase chain reaction (RT-qPCR) revealed robust and dynamic patterns of stage-specific gene activity that fall into four major clusters depending on their respective mRNA profiles.
Purpose: Bovine Rotavirus and Bovine Coronavirus are the most important causes of diarrhea in newborn calves and in some other species such as pigs and sheep. Rotavirus VP8 subunit is the major determinant of the viral infectivity and neutralization. Spike glycoprotein of coronavirus is responsible for induction of neutralizing antibody response.
View Article and Find Full Text PDFObjective: This research intends to unravel the temporal expression profiles of genes in- volved in three developmentally important signaling pathways [transforming growth factor-β (TGF-β), fibroblast growth factor (FGF) and wingless/int (WNT)] during preand peri-implan- tation goat embryo development.
Materials And Methods: In this experimental study, we examined the transcripts that encoded the ligand, receptor, intracellular signal transducer and modifier, and the down- stream effector, for each signaling pathway. In vitro mature MII oocytes and embryos at three distinctive stages [8-16 cell stage, day-7 (D7) blastocysts and day-14 (D14) blas- tocysts] were separately prepared in triplicate for comparative real-time reverse tran- scriptase polymerase chain reaction (RT-PCR) using the selected gene sets.
Recent studies show that spermatogonial stem cells (SSCs) are able to colonize and form mature spermatozoa following transplantation into germ cell depleted testes of recipient males. Therefore, efficient ways for enrichment and gene transfer into SSCs provides a powerful tool for production of transgenic animals. In order to adapt the technique to goats, three issues were addressed: (i) enrichment of the undifferentiated spermatogonia including SSCs using magnetic activated cell sorting (MACS), (ii) lentiviral vector-mediated transduction of an enhanced green fluorescent protein (EGFP) transgene into enriched cells, and (iii) transplantation of transduced undifferentiated spermatogonia into the germ cell depleted testes of immune-suppressed mice to assess for migration and colony formation ability.
View Article and Find Full Text PDFObjectives: Brucellosis is a well-known domestic animal infectious disease, which is caused by Brucella bacterium. GroEL antigen increases Brucella survival and is one of the major antigens that stimulates the immune system. Hence, the objective of the present study was cloning and bioinformatics analysis of GroEL gene.
View Article and Find Full Text PDFVery little is known about and genes of domestic dromedary camels. The main objective of this study was to determine and analyze partial genomic regions of and genes in dromedary camels for the first time. To this end, a total of50 DNA samples belonging to dromedary camels raised in Iran were sent for sequencing (25 samples of each gene).
View Article and Find Full Text PDFUnderstanding cattle metabolism and its relationship with milk products is important in bovine breeding. A systemic view could lead to consequences that will result in a better understanding of existing concepts. Topological indices and quantitative characterizations mostly result from the application of graph theory on biological data.
View Article and Find Full Text PDFDuring recent years, there has been exponential growth in biological information. With the emergence of large datasets in biology, life scientists are encountering bottlenecks in handling the biological data. This study presents an integrated geographic information system (GIS)-ontology application for handling microbial genome data.
View Article and Find Full Text PDF