Cellular biomaterials offer unique properties for diverse biomedical applications. However, their complex viscoelastic behavior requires careful consideration for design optimization. This study explores the effective viscoelastic response of two promising unit cell designs (tetrahedron-based and octet-truss) suitable for high porosity and strong mechanics.
View Article and Find Full Text PDFMaterial-extrusion-based 3D printing with polylactic acid (PLA) has transformed the production of lightweight lattice structures with a high strength-to-weight ratio for various industries. While PLA offers advantages such as eco-friendliness, affordability, and printability, its mechanical properties degrade due to environmental factors. This study investigated the impact resistance of PLA lattice structures subjected to material degradation under room temperature, humidity, and natural light exposure.
View Article and Find Full Text PDFThe formation of multiple delaminations is a frequently observed damage mechanism in composite materials, exerting a more pronounced influence on their strength properties compared to single delaminations. To tackle this issue, the incorporation of nanoparticles has been investigated as a means to enhance composite materials. This study aims to examine the effects of nano-additives, specifically carbon nanotubes and nanosilica, on the flexural behavior of glass/epoxy composites containing multiple embedded delaminations.
View Article and Find Full Text PDFExploiting scattering and reflection related data of ultrasonic Lamb wave interactions with damage is a common approach to health monitoring of thin-walled structures. Using thin PZT sensors, the method can be implemented in real-time. Simulation of Lamb wave propagation and its interaction with damage plays an important role in damage diagnosis and prognosis.
View Article and Find Full Text PDFFor a liquid electrolyte-based dye-sensitized solar cell (DSSC), long-term device instability is known to negatively affect the ionic conductivity and cell performance. These issues can be resolved by using the so called quasi-solid-state electrolytes. Despite the enhanced ionic conductivity of graphene nanoplatelets (GNPs), their inherent tendency toward aggregation has limited their application in quasi-solid-state electrolytes.
View Article and Find Full Text PDFInfection is one of the major factors affecting wound healing. The use of polymeric fibrous constructs or scaffolds with encapsulated biologically active components has shown great potential in topical wound care as wound dressings to expedite wound healing process; however, there is a limitation in precise control over the release of active components. Therefore, in this study, the authors developed a facile method for controlled fabrication of poly(-caprolactone) (PCL) microfibrous constructs with silver (Ag) nanoparticles as antibacterial agent by single capillary electrospinning.
View Article and Find Full Text PDFHoneycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2018
Additive manufacturing techniques have made it possible to create open-cell porous structures with arbitrary micro-geometrical characteristics. Since a wide range of micro-geometrical features is available for making an implant, having a comprehensive knowledge of the mechanical response of cellular structures is very useful. In this study, finite element simulations have been carried out to investigate the effect of structure unit cell type (cube, rhombic dodecahedron, Kelvin, Weaire-Phelan, and diamond), cross-section type (circular, square, and triangular), strut length, and relative density on the Young's modulus, shear modulus, yield stress, shear yield stress, and Poisson's ratio of open-cell tessellated cellular structures.
View Article and Find Full Text PDF