. Brain-machine interfaces are key components for the development of hands-free, brain-controlled devices. Electroencephalogram (EEG) electrodes are particularly attractive for harvesting the neural signals in a non-invasive fashion.
View Article and Find Full Text PDFThe potential of transition metal dichalcogenides such as MoS for energy storage has been significantly limited so far by the lack of conductivity and structural stability. Employing highly conductive, graphitic materials in combination with transition metal dichalcogenides can address this gap. Here, we explore the use of a layered electrode structure for solid-state supercapacitors, made of MoS and epitaxial graphene (EG) on cubic silicon carbide for on-silicon energy storage.
View Article and Find Full Text PDFBeilstein J Nanotechnol
October 2018
Molybdenum (Mo) is the most commonly used material as back contact in thin-film solar cells. Adhesion of Mo film to soda-lime glass (SLG) substrate is crucial to the performance of solar cells. In this study, an optimized bilayer structure made of a thin layer of Mo on an ultra-thin chromium (Cr) adhesion layer is used as the back contact for a copper zinc tin sulfide (CZTS) thin-film solar cell on a SLG substrate.
View Article and Find Full Text PDFThe inelastic mean free path (IMFP) for carbon-based materials is notoriously challenging to model, and moving from bulk materials to 2D materials may exacerbate this problem, making the accurate measurements of IMFP in 2D carbon materials critical. The overlayer-film method is a common experimental method to estimate IMFP by measuring electron effective attenuation length (EAL). This estimation relies on an assumption that elastic scattering effects are negligible.
View Article and Find Full Text PDFGrowing graphene on SiC thin films on Si is a cheaper alternative to the growth on bulk SiC, and for this reason it has been recently intensively investigated. Here we study the effect of hydrogen intercalation on epitaxial graphene obtained by high temperature annealing on 3C-SiC/Si(111) in ultra-high vacuum. By using a combination of core-level photoelectron spectroscopy, low energy electron diffraction, and near-edge x-ray absorption fine structure (NEXAFS) we find that hydrogen saturates the Si atoms at the topmost layer of the substrate, leading to free-standing graphene on 3C-SiC/Si(111).
View Article and Find Full Text PDFA novel approach to improve the specific capacitance of reduced graphene oxide (rGO) films is reported. We combine the aqueous dispersion of liquid-crystalline GO incorporating salt and urea with a blade-coating technique to make hybrid films. After drying, stacked GO sheets mediated by solidified NaCl and urea are hydrothermally reduced, resulting in a nanoporous film consisting of rumpled N-doped rGO sheets.
View Article and Find Full Text PDFEpitaxial growth of graphene on SiC is a scalable procedure that does not require any further transfer step, making this an ideal platform for graphene nanostructure fabrication. Focused ion beam (FIB) is a very promising tool for exploring the reduction of the lateral dimension of graphene on SiC to the nanometre scale. However, exposure of graphene to the Ga beam causes significant surface damage through amorphisation and contamination, preventing epitaxial graphene growth.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2016
The formation of liquid crystal (LC) phases in graphene oxide (GO) aqueous solution is utilized to develop high-performance supercapacitors. To investigate the effect of LC formation on the properties of subsequently reduced GO (rGO), we compare films prepared through blade-coating of viscous LC-GO solution and ultrasonic spray-coating of diluted GO aqueous dispersion. After hydrothermal reduction under identical conditions, the films show different morphology, oxygen content, and specific capacitance.
View Article and Find Full Text PDF