Publications by authors named "Mojgan Shahriari"

An environmentally responsive root system is crucial for plant growth and crop yield, especially in suboptimal soil conditions. This responsiveness enables the plant to exploit regions of high nutrient density while simultaneously minimizing abiotic stress. Despite the vital importance of root systems in regulating plant growth, significant gaps of knowledge exist in the mechanisms that regulate their architecture.

View Article and Find Full Text PDF

C4 photosynthesis increases the efficiency of carbon fixation by spatially separating high concentrations of molecular oxygen from Rubisco. The specialized leaf anatomy required for this separation evolved independently many times. The morphology of C4 root systems is also distinctive and adapted to support high rates of photosynthesis; however, little is known about the molecular mechanisms that have driven the evolution of C4 root system architecture.

View Article and Find Full Text PDF

The transport of auxin controls the rate, direction and localization of plant growth and development. The course of auxin transport is defined by the polar subcellular localization of the PIN proteins, a family of auxin efflux transporters. However, little is known about the composition and regulation of the PIN protein complex.

View Article and Find Full Text PDF

Cell death, autophagy and endosomal sorting contribute to many physiological, developmental and immunological processes in plants. They are mechanistically interconnected and interdependent, but the molecular basis of their mutual regulation has only begun to emerge in plants. Here, we describe the identification and molecular characterization of CELL DEATH RELATED ENDOSOMAL FYVE/SYLF PROTEIN 1 (CFS1).

View Article and Find Full Text PDF

Systems biology orientates signaling pathways in their biological context. This aim invariably requires models that ignore extraneous factors and focus on the most crucial pathways of any given process. The developing embryo encapsulates many important processes in plant development; understanding their interaction will be key to designing crops able to maximize yield in an ever-more challenging world.

View Article and Find Full Text PDF

Sorting of transmembrane proteins into the inner vesicles of multivesicular bodies for subsequent delivery to the vacuole/lysosome can be induced by attachment of a single ubiquitin or K63-linked ubiquitin chains to the cytosolic portion of the cargo in yeast and mammals. In plants, large efforts have been undertaken to elucidate the mechanisms of vacuolar trafficking of soluble proteins. Sorting of transmembrane proteins, by contrast, is still largely unexplored.

View Article and Find Full Text PDF

In yeast, endosomal sorting of monoubiquitylated transmembrane proteins is performed by a subset of the 19 "class E vacuolar protein sorting" proteins. The core machinery consists of 11 proteins that are organised in three complexes termed ESCRT I-III (endosomal sorting complex required for transport I-III) and is conserved in eukaryotic cells. While the pathway is well understood in yeast and animals, the plant ESCRT system is largely unexplored.

View Article and Find Full Text PDF

We have recently shown that overexpression of dominant-negative AtSKD1 versions under control of the trichome and non-root-hair-cell specific GL2 promoter (GL2pro) blocks trafficking of soluble cargo to the vacuole, resulting in its fragmentation and ultimately cell death. GL2pro is also active in the Arabidopsis seeds. When we inspected seeds of the dominant-negative AtSKD1 variants we found two phenotypes.

View Article and Find Full Text PDF

The vacuole is the most prominent organelle of plant cells. Despite its importance for many physiological and developmental aspects of plant life, little is known about its biogenesis and maintenance. Here we show that Arabidopsis plants expressing a dominant-negative version of the AAA (ATPase associated with various cellular activities) ATPase AtSKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1) under the control of the trichome-specific GLABRA2 (GL2) promoter exhibit normal vacuolar development in early stages of trichome development.

View Article and Find Full Text PDF

Recently, an alternative route to the proteasomal protein-degradation pathway was discovered that specifically targets transmembrane proteins marked with a single ubiquitin to the endosomal multivesicular body (MVB) and, subsequently, to the vacuole (yeast) or lysosome (animals), where they are degraded by proteases. Vps23p/TSG101 is a key component of the ESCRT I-III machinery in yeast and animals that recognizes mono-ubiquitylated proteins and sorts them into the MVB. Here, we report that the Arabidopsis ELCH (ELC) gene encodes a Vps23p/TSG101 homolog, and that homologs of all known ESCRT I-III components are present in the Arabidopsis genome.

View Article and Find Full Text PDF