Coastal aquifer vulnerability assessment (CAVA) studies are essential for mitigating the effects of seawater intrusion (SWI) worldwide. In this research, the vulnerability of the coastal aquifer in the Lahijan region of northwest Iran was investigated. A vulnerability map (VM) was created applying hydrogeological parameters derived from the original GALDIT model (OGM).
View Article and Find Full Text PDFThis study examined coastal aquifer vulnerability to seawater intrusion (SWI) in the Shiramin area in northwest Iran. Here, six types of hydrogeological data layers existing in the traditional GALDIT framework (TGF) were used to build one vulnerability map. Moreover, a modified traditional GALDIT framework (mod-TGF) was prepared by eliminating the data layer of aquifer type from the GALDIT model and adding the data layers of aquifer media and well density.
View Article and Find Full Text PDFThe rapid decline in both quality and availability of freshwater resources on our planet necessitates their thorough assessment to ensure sustainable usage. The growing demand for water in industrial, agricultural, and domestic sectors poses significant challenges to managing both surface and groundwater resources. This study tests and proposes a hybrid evaluation approach to determine Groundwater Quality Indices (GQIs) for irrigation (IRRI), seawater intrusion (SWI), and potability (POT), finalized to the spatial distribution of groundwater suitability involving water quality indicator along with hydrogeological and socio-economic factors.
View Article and Find Full Text PDFConsidering the large number of natural disasters on the planet, many areas in the world are at risk of these hazards; therefore, providing an integrated map as a guide map for multiple natural hazards can be applied to save human lives and reduce financial losses. This study designed a multi-hazard map for three important hazards (earthquakes, floods, and landslides) to identify endangered areas in Kermanshah province located in western Iran using ensemble SWARA-ANFIS-PSO and SWARA-ANFIS-GWO models. In the first step, flood and landslide inventory maps were generated to identify at-risk areas.
View Article and Find Full Text PDFWe used three state-of-the-art machine learning techniques (boosted regression tree, random forest, and support vector machine) to produce a multi-hazard (MHR) map illustrating areas susceptible to flooding, gully erosion, forest fires, and earthquakes in Kohgiluyeh and Boyer-Ahmad Province, Iran. The earthquake hazard map was derived from a probabilistic seismic hazard analysis. The mean decrease Gini (MDG) method was implemented to determine the relative importance of effective factors on the spatial occurrence of each of the four hazards.
View Article and Find Full Text PDFDue to excessive exploitation, groundwater resources of coastal regions are exposed to seawater intrusion. Therefore, vulnerability assessments are essential for the quantitative and qualitative management of these resources. The GALDIT model is the most widely used approach for coastal aquifer vulnerability assessment, but suffers from subjectivity of the identification of rates and weights.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2019
Effects of pollution caused by seawater intrusion into groundwater in coastal aquifers cannot be ignored. Identification of areas exposed to this pollution by preparing vulnerability maps is one way of preventing aquifer pollution. In its primary section, the present study compared three different index ranking methods of DRASTIC, GALDIT, and SINTACS to select an optimal model for determining vulnerability of the Gharesoo-Gorgan Rood coastal aquifer.
View Article and Find Full Text PDF