The rare presence of circulating tumor cells (CTCs) in the bloodstream has made their recording and separation one of the major challenges in the recent decade. Inertia-based microfluidic systems have received more attention in CTCs separation due to their feasibility and low cost. In this research, an inertial microfluidic system is proposed using a curved expansion-contraction array (CEA) microchannel to separate CTCs from white blood cells (WBCs).
View Article and Find Full Text PDFFabricating a multifunctional orthopedic implant which prevents post-surgery infection is highly desirable in advanced materials applications. However, designing an antimicrobial implant, which simultaneously promotes a sustained drug release and satisfactory cell proliferation, remains a challenge. The current study presents a drug-loaded surface-modified titanium nanotube (TNT) implant with different surface chemistry which was developed to investigate the effect of surface coating on drug release, antimicrobial activity, and cell proliferation.
View Article and Find Full Text PDFBiomech Model Mechanobiol
April 2022
Targeted drug delivery (TDD) to abdominal aortic aneurysm (AAA) using a controlled and efficient approach has recently been a significant challenge. In this study, by using magnetic microbubbles (MMBs) under a magnetic field, we investigated the MMBs performance in TDD to AAA based on the amount of surface density of MMBs (SDMM) adhered to the AAA lumen. The results showed that among the types of MMBs studied in the presence of the magnetic field, micromarkers are the best type of microbubble with a -[Formula: see text] increase in SDMM adhered to the critical area of AAA.
View Article and Find Full Text PDFSince the beginning of the COVID-19 pandemic, nearly most confirmed cases develop respiratory syndromes. Using targeted drug delivery by microcarriers is one of the most important noteworthy methods for delivering drugs to the involved bronchi. This study aims to investigate the performance of a drug delivery that applies microcarriers to each branch of the lung under the influence of a magnetic field.
View Article and Find Full Text PDF