Phytoestrogens are plant-derived compounds that functionally and structurally mimic mammalian estrogens. Phytoestrogens have broad inhibitory activities toward several steroidogenic enzymes, such as the 17β-hydroxysteroid dehydrogenases (17β-HSDs), which modulate the biological potency of androgens and estrogens in mammals. However, to date, no crystallographic data are available to explain phytoestrogens binding to mammalian 17β-HSDs.
View Article and Find Full Text PDFThe 17β-HSD (17β-hydroxysteroid dehydrogenase) from the filamentous fungus Cochliobolus lunatus (17β-HSDcl) is a NADP(H)-dependent enzyme that preferentially catalyses the interconversion of inactive 17-oxo-steroids and their active 17β-hydroxy counterparts. 17β-HSDcl belongs to the SDR (short-chain dehydrogenase/reductase) superfamily. It is currently the only fungal 17β-HSD member that has been described and represents one of the model enzymes of the cP1 classical subfamily of NADPH-dependent SDR enzymes.
View Article and Find Full Text PDFCurvularia lunata is a dark pigmented fungus that is the causative agent of several diseases in plants and in both immunodeficient and immunocompetent patients. 1,8-Dihydroxynaphthalene-melanin is found in the cell wall of C. lunata and is believed to be the important virulence factor of dematiaceous fungi.
View Article and Find Full Text PDF17β-Hydroxysteroid dehydrogenase and trihydroxynaphthalene reductase from the fungus Curvularia lunata (teleomorph: Cochliobolus lunatus; 17β-HSDcl and 3HNR, respectively) are two homologous short-chain dehydrogenase/reductase proteins that are 58% identical and have 86% similar amino acids. The minor differences in their substrate-binding regions are believed to be crucial for their substrate specificities. 3HNR shows high affinity for substrates with two rings, like trihydroxynaphthalene and 2,3-dihydro-2,5-dihydroxy-4H-benzopyran-4-one (DDBO), while 17β-HSDcl can accommodate ligands with four rings, like steroids.
View Article and Find Full Text PDF