Federal statutes authorize several agencies to protect human populations from chemical emergencies and provide guidance to evacuate, clean, and reoccupy affected areas. Each of the authorized federal agencies has developed programs to provide managers, public health officials, and regulators, with a rapid assessment of potential hazards and risks associated with chemical emergencies. Emergency responses vary based on exposure scenarios, routes, temporal considerations, and the substance(s) present.
View Article and Find Full Text PDFLead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As) are among the top 10 pollutants of global health concern. Studies have shown that exposures to these metals produce severe adverse effects. However, the mechanisms underlying these effects, particularly joint toxicities, are poorly understood in humans.
View Article and Find Full Text PDFMost of the experimental toxicity testing data for chemicals are generated through the use of laboratory animals, namely, rodents such as rats and mice or other species. Interspecies extrapolation is needed to nullify the differences between species so as to use such data for human health/risk assessment. Thus, understanding of interspecies differences is important in extrapolating the laboratory results to humans and conducting human risk assessments based on current credible scientific knowledge.
View Article and Find Full Text PDFThe role of nonchemical stressors in modulating the human health risk associated with chemical exposures is an area of increasing attention. On 9 March 2011, a workshop titled "Approaches for Incorporating Nonchemical Stressors into Cumulative Risk Assessment" took place during the 50th Anniversary Annual Society of Toxicology Meeting in Washington D.C.
View Article and Find Full Text PDFFor communities generally and for persons living in the vicinity of waste sites specifically, potential exposures to chemical mixtures are genuine concerns. Such concerns often arise from perceptions of a site's higher than anticipated toxicity due to synergistic interactions among chemicals. This chapter outlines some historical approaches to mixtures risk assessment.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
August 2009
The paper reflects on the last 15years of experience in the field of mixtures risk assessment. It summarizes results found in various documents developed by the Agency for Toxic Substances and Disease Registry (ATSDR) of the weight-of-evidence (WOE) approach applied to 380 binary combinations of chemicals. Of these evaluations, 156 assessments indicated possible additivity of effects [=], 76 indicated synergism (greater-than-additive effects [>]), and 57 indicated antagonism (less-than-additive effects [<]).
View Article and Find Full Text PDFABSTRACT Hazard identification and health risk assessment traditionally rely on results of experimental testing in laboratory animals. It is a lengthy and expensive process, which at the end still involves large uncertainty because the sensitivity of animals is unequal to the sensitivity of humans. The Agency for Toxic Substances and Disease Registry (ATSDR) Computational Toxicology and Method Development Laboratory develops and applies advanced computational models that augment the traditional toxicological approach with multilevel cross-extrapolation techniques.
View Article and Find Full Text PDFThe present research aimed to study the interaction of three chemicals, methyl mercury, benzene and trichloroethylene, on mRNA expression alterations in rat liver and kidney measured by microarray analysis. These compounds were selected based on presumed different modes of action. The chemicals were administered daily for 14 days at the Lowest-Observed-Adverse-Effect-Level (LOAEL) or at a two- or threefold lower concentration individually or in binary or ternary mixtures.
View Article and Find Full Text PDFThimerosal, which releases the ethyl mercury radical as the active species, has been used as a preservative in many currently marketed vaccines throughout the world. Because of concerns that its toxicity could be similar to that of methyl mercury, it is no longer incorporated in many vaccines in the United States. There are reasons to believe, however, that the disposition and toxicity of ethyl mercury compounds, including thimerosal, may differ substantially from those of the methyl form.
View Article and Find Full Text PDFThe aim was to study the subchronic toxicity of perchloroethylene (Perc) by measuring injury and repair in liver and kidney in relation to disposition of Perc and its major metabolites. Male SW mice (25-29g) were given three dose levels of Perc (150, 500, and 1000 mg/kg day) via aqueous gavage for 30 days. Tissue injury was measured during the dosing regimen (0, 1, 7, 14, and 30 days) and over a time course of 24-96h after the last dose (30 days).
View Article and Find Full Text PDFProtection offered by pre-exposure priming with a small dose of a toxicant against the toxic and lethal effects of a subsequently administered high dose of the same toxicant is autoprotection. Although autoprotection has been extensively studied with diverse toxicants in acute exposure regimen, not much is known about autoprotection after priming with repeated exposure. The objective of this study was to investigate this concept following repeated exposure to a common water contaminant, chloroform.
View Article and Find Full Text PDFThe aims of the present study were to characterize the subchronic toxicity of chloroform by measuring tissue injury, repair, and distribution of chloroform and to assess the reasons for the development of tolerance to subchronic chloroform toxicity. Male Swiss Webster (SW) mice were given three dose levels of chloroform (150, 225, and 300 mg/kg/day) by gavage in aqueous vehicle for 30 days. Liver and kidney injury were measured by plasma ALT and BUN, respectively, and by histopathology.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
June 2005
The aim of the present study was to investigate the hypothesis that liver tissue repair induced by exposure to chloroform (CHCl(3))+trichloroethylene binary mixture (BM) is dose-dependent similar to that elicited by exposure to these compounds individually. Male Sprague-Dawley rats (250-300 g) received three dose combinations of binary mixture (74+250, 185+500 and 370+1250 mg CHCl(3)+trichloroethylene/kg, intraperitoneally) in corn oil (maximum of 0.5 ml/kg).
View Article and Find Full Text PDFUnder OSHA and American Conference of Governmental Industrial Hygienists (ACGIH) guidelines, the mixture formula (unity calculation) provides a method for evaluating exposures to mixtures of chemicals that cause similar toxicities. According to the formula, if exposures are reduced in proportion to the number of chemicals and their respective exposure limits, the overall exposure is acceptable. This approach assumes that responses are additive, which is not the case when pharmacokinetic interactions occur.
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
November 2004
The objective of this study was to test whether a binary mixture (BM) of chloroform (CHCl(3)) and thioacetamide (TA) causes a dose-dependent liver injury and an opposing tissue repair. Liver injury was assessed by plasma alanine aminotransferase (ALT) and histopathology. Tissue repair was measured by [(3)H-CH(3)]-thymidine ((3)H-T) incorporation into hepatonuclear DNA and PCNA over a time course of 0-72h.
View Article and Find Full Text PDFOne of the initial steps in remediating contaminated environments is to assess the human and ecological health risk associated with exposure to contaminants in a specific medium. Presented here are the results of a five-year study investigating the toxicity of simple and complex mixtures. A series of model compounds and simple mixtures including polycyclic aromatic hydrocarbons (PAHs), pentachlorophenol (PCP), and halogenated aliphatic hydrocarbons (HAHs) were analyzed.
View Article and Find Full Text PDFPetroleum hydrocarbon mixtures such as gasoline, diesel fuel, aviation fuel, and asphalt liquids typically contain hundreds of compounds. These compounds include aliphatic and aromatic hydrocarbons within a specific molecular weight range and sometimes lesser amounts of additives, and often exhibit qualitatively similar pharmacokinetic (PK) and pharmacodynamic properties. However, there are some components that exhibit specific biological effects, such as methyl t-butyl ether and benzene in gasoline.
View Article and Find Full Text PDFEnvironmental exposure is usually due to the presence of multiple chemicals. In most cases, these chemicals interact with each other at both pharmacokinetic and pharmacodynamic toxicity mechanisms. In the absence of data, joint toxicity assessment of a mixture is based on default dose or response additivity.
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
March 2004
Three regression methods, namely ridge regression (RR), partial least squares (PLS), and principal components regression (PCR), were used to develop models for the prediction of rat blood:air partition coefficient for increasingly diverse data sets. Initially, modeling was performed for a set of 13 chlorocarbons. To this set, 10 additional hydrophobic compounds were added, including aromatic and non-aromatic hydrocarbons.
View Article and Find Full Text PDFThe objective of this study was to evaluate the interaction profile of chloroform (CHCl(3))+allyl alcohol (AA) binary mixture (BM)-induced acute hepatotoxic response. Plasma alanine aminotransferase (ALT) was measured to assess liver injury, and 3H-thymidine (3H-T) incorporation into hepatonuclear DNA was measured as an index of liver regeneration over a time course of 0-72 h. Male Sprague-Dawley (S-D) rats received single ip injection of 5-fold dose range of CHCl(3) (74, 185 and 370 mg/kg) in corn oil (maximum 0.
View Article and Find Full Text PDFAs a part of mixture toxicity studies, the objective of the present investigation was to validate the hypothesis that the rate and extent of liver tissue repair response to a given dose determines the end result of toxicity (death or recovery), regardless of the mechanisms by which injury is inflicted, using a well-known environmental pollutant, chloroform (CHCl(3)). In future, the data will be used to compare with the results of mixtures containing CHCl(3) to aid in characterizing the safety of chemical mixtures and to construct a physiologically based pharmacokinetic (PBPK) model for dose, route, and species extrapolation. Hepatotoxicity and tissue repair were measured in male Sprague-Dawley rats (S-D) receiving a 10-fold dose range of CHCl(3) (74, 185, 370, and 740 mg/kg, IP) during a time course of 0 to 96 hours.
View Article and Find Full Text PDFIn its efforts to provide consultations to state and local health departments, other federal agencies, health professionals, and the public on the health effects of environmental pollutants, the Agency for Toxic Substances and Disease Registry relies on the latest advances in computational toxicology. The computational toxicology laboratory at the agency is continually engaged in developing and applying models for decision-support tools such as physiologically based pharmacokinetic (PBPK) models, benchmark dose (BMD) models, and quantitative structure-activity relationship (QSAR) models. PBPK models are suitable for connecting exposure scenarios to biological indicators such as tissue dose or end point response.
View Article and Find Full Text PDF