Publications by authors named "Moisescu C"

Polymer electrolyte membrane fuel cells require cheap and active electrocatalysts to drive the oxygen reduction reaction. Nitrogen-doped carbons have been extensively studied regarding their oxygen reduction reaction. The work at hand looks beyond the nitrogen chemistry and brings to light the role of oxygen.

View Article and Find Full Text PDF

Auriferous sulphide ores often incorporate micro-fine (or invisible) gold and silver particles in a manner making their extraction difficult. Nobel metals are lost in the tailings due to the refractory nature of these ores. Bioleaching is an environment-friendly alternative to the commonly used and toxic cyanidation protocols for gold extraction from refractory ores.

View Article and Find Full Text PDF

Magnetotactic bacteria (MTB) are considered the model species for the controlled biomineralization of magnetic Fe oxide (magnetite, Fe3O4) or Fe sulfide (greigite, Fe3S4) nanocrystals in living organisms. In MTB, magnetic minerals form as membrane-bound, single-magnetic domain crystals known as magnetosomes and the synthesis of magnetosomes by MTB is a highly controlled process at the genetic level. Magnetosome crystals reveal highest purity and highest quality magnetic properties and are therefore increasingly sought after as novel nanoparticulate biomaterials for industrial and medical applications.

View Article and Find Full Text PDF

Cell division in magnetotactic bacteria has attracted much interest, speculation and hypothesis with respect to the biomineralised chains of magnetic iron-oxide particles known as magnetosomes. Here we report direct Transmission Electron Microscopy (TEM) evidence that division occurs at a central point of the cell and the chain, cleaving the magnetosome chain in two. Additionally, the new magnetosome chain relocates rapidly to the centre of the daughter cell and the number of magnetosomes is directly proportional to the cell length, even during the division part of the cell cycle.

View Article and Find Full Text PDF

The results of a surface analysis performed on a fluoroapatite-based glass ceramic (SAF) also coating a full-density alpha-alumina substrate (SAF-alumina coating) are presented. These two materials have also been evaluated after soaking in simulated body fluid to understand their ability to induce hydroxyapatite growth on them. Aiming to understand the fluoroapatite glass-ceramic interaction with some plasma proteins, in the second part of this study, fibronectin, albumin, immunoglobulin G, IgA, and complement factor C3c SAF binding have been evaluated; surface activity on complement activation has also been quantified.

View Article and Find Full Text PDF

The aim of this work was to realise bioactive coatings on full density alpha-alumina substrates. An SiO2-CaO-based glass (SC) and an SiO2-Al2O3-P2O5-K2O-CaO-F--based glass-ceramic (SAF) were used for this purpose. Specifically, SAF is a fluoroapatite containing glass-ceramic and previous studies have shown that it is a highly bioactive biomaterial.

View Article and Find Full Text PDF

In order to combine the mechanical properties of a high-strength inert ceramic (yttria-stabilised zirconia, ZrO2-3%Y2O3, defined as zirconia in the text) with the specific properties of bioactive materials, some zirconia samples were coated by two bioactive phosphosilicate glasses and glass-ceramics: RKKP and AP40. Coatings of about 200-300 microm thickness were prepared by a simple and low-cost firing method. They were characterised by optical and scanning electron microscopy (SEM) and compositional analysis (EDS).

View Article and Find Full Text PDF