The mouse spontaneously develops the condition of obesity in captivity when fed regular chow. We aim to study the differences in metabolic performance and thermoregulation between adult lean and obese male mice. The experimental approach included indirect calorimetry using metabolic cages for VO intake and VCO production.
View Article and Find Full Text PDFChronobiol Int
April 2021
Obesity is a global health threat and a risk factor for several metabolic conditions. Though circadian dysfunction has been considered among the multiple causes of obesity, little work has been done to explore the relationship between obesity, circadian dysfunction, and sexual dimorphism. The mouse is a suitable model for such research.
View Article and Find Full Text PDFBackground & Aims: Evening chronotype has been linked with obesity, diabetes and metabolic syndrome (MetS) in middle-aged and older adults. However, few studies have analyzed this association in young adults. The aim of this study was to assess potential associations between individual chronotype and cardiometabolic outcomes in young adults of two independent populations from Europe and America.
View Article and Find Full Text PDFDisruption of circadian rhythms influences the pathogenesis of obesity, particularly with the basic regulation of food intake and metabolism. A link between metabolism and the circadian clock is the peroxisome proliferator-activated receptors (PPARs). The Neotomodon alstoni mouse, known as the "Mexican volcano mouse," may develop obesity if fed a normo-caloric diet.
View Article and Find Full Text PDFThis article compared the effects of spontaneous obesity on the daily profile in the relative amount of the leptin receptor (LepRb), and its output. That is the precursor Pro-opiomelanocortin (POMC) over a 24-hour period and compared with differences in locomotion and food intake in periods of artificial light. Differences between lean and obese mice were examined, as were sex differences.
View Article and Find Full Text PDFGlutamate dehydrogenase is an important enzyme in the hepatic regulation of nitrogen and energy metabolism. It catalyzes one of the most relevant anaplerotic reactions. Although its relevance in liver homeostasis has been widely described, its daily pattern and responsiveness to restricted feeding protocols has not been studied.
View Article and Find Full Text PDFDaytime restricted feeding (DRF) promotes circadian adaptations in the metabolic processing of nutrients. We explored the hepatic gluconeogenic response in DRF rats by the temporal profiles of the following: (1) the activity of glucose 6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), as well as the periportal and pericentral distribution of PEPCK; (2) conversion of alanine to glucose; (3) glycemia and liver glycogen content; (4) presence of glycogen synthase (GYS) and its phosphorylated form (at Ser641, pGYS); (5) circulating levels of corticosterone, glucagon and insulin; (6) glucose-tolerance test; and (7) sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-coactivator 1α (PGC-1α). The results showed that DRF promoted: (1) a phase shift in G6Pase activity and an increase in PEPCK activity as well as a change of PEPCK from periportal to pericentral hepatocytes, (2) a net conversion of alanine to circulating glucose, (3) a decrease in glycemic values and a phase shift in the liver glycogen content, (4) a phase shift in GYS and an increase of pGYS, (5) an increase in the daily levels of corticosterone and glucagon, but a reduction in the levels of insulin, (6) normal glucose homeostasis in all groups and (7) an enhanced presence of SIRT1 and PGC-1α.
View Article and Find Full Text PDF