Mexican Coreño Creole cattle are an important genetic resource adapted to local environmental conditions, so the study of their genetic diversity is essential to know their status and implement conservation programs and their use for crossbreeding. This study evaluated the genetic diversity of heat stress tolerance characteristics of Coreño Creole cattle, and a gene ontology enrichment was performed to know the biological processes in which candidate genes are involved. A total of 48 samples from three localities of Nayarit were genotyped using 777 K Illumina BovineHD BeadChip and 34 single nucleotide polymorphisms associated with candidate genes were selected.
View Article and Find Full Text PDFGenes (Basel)
October 2023
Reproductive efficiency stands as a critical determinant of profitability within beef production systems. The incorporation of molecular markers can expedite advancements in reproductive performance. While the use of SNPs in association analysis is prevalent, approaches centered on haplotypes can offer a more comprehensive insight.
View Article and Find Full Text PDFObjective: In tropical, subtropical and arid zones, heat stress is the main cause of productivity reduction in cattle. When climate stressors occur, animals become thermal adapted through differential expression of some genes, including heat shock proteins (HSP) family. The aim of this study was to determine levels of expression of HSP60, HSP70, and HSP90 genes in Simmental cattle raised in tropical environments of Mexico.
View Article and Find Full Text PDFObjective: The objective of this study was to perform genome (genome wide association studies [GWAS]) and chromosome (CWAS) wide association analyses to identify single nucleotide polymorphisms (SNPs) associated with growth traits in registered Simmental and Simbrah cattle.
Methods: The phenotypes were deregressed BLUP EBVs for birth weight, weaning weight direct, weaning weight maternal, and yearling weight. The genotyping was performed with the GGP Bovine 150k chip.
Objective: The aim was to characterize the genetic diversity evolution of the registered Mexican Charolais cattle population by pedigree analysis.
Methods: Data consisted of 331,390 pedigree records of animals born from 1934 to 2018. Average complete generation equivalent, generation interval, effective population size (Ne), and effective numbers of founders (fe), ancestors (fa), and founder genomes (Ng) were calculated for seven five-year periods.