The field of antibody therapeutics is rapidly growing, with over 210 antibodies currently approved or in regulatory review and ~ 1,250 antibodies in clinical development. Antibodies are highly versatile molecules that, with strategic design of their antigen-binding domain (Fab) and the domain responsible for mediating effector functions (Fc), can be used in a wide range of therapeutic indications. Building on many years of progress, the biopharmaceutical industry is now advancing innovative research and development by exploring new targets and new formats and using antibody engineering to fine-tune functions tailored to specific disease requirements.
View Article and Find Full Text PDFA faith-based healthcare system implemented a Leadership as Wholeness formation program, including a spiritual formation curriculum described here. The spiritual formation curriculum intends to connect leaders with their purpose and identity to ensure mission stability in the organizational culture, now and in the future. More research must be done to understand how, or even if, these types of programs make a meaningful difference in organizational mission initiatives and workforce stability.
View Article and Find Full Text PDFIntroduction: Papillary renal cell carcinoma (pRCC) is a rare and aggressive cancer with no specifically established therapeutic strategy in the metastatic setting. Combinations of tyrosine kinase and immune checkpoint inhibitors (ICI) are a promising option. We aimed to study the immune landscape of metastatic pRCC, and its interactions with angiogenesis pathways, to search for potential therapeutic targets.
View Article and Find Full Text PDFPathogens escape host defenses by T-cell epitope mutation or deletion (immune escape) and by simulating the appearance of human T cell epitopes (immune camouflage). We identified a highly conserved, human-like T cell epitope in non-structural protein 7 (NSP7) of SARS-CoV-2, RNA-dependent RNA polymerase (RdRp) hetero-tetramer complex. Remarkably, this T cell epitope has significant homology to a T regulatory cell epitope (Tregitope) previously identified in the Fc region of human immunoglobulin G (IgG) (Tregitope 289).
View Article and Find Full Text PDFA significant surge in research endeavors leverages the vast potential of high-throughput omic technology platforms for broad profiling of biological responses to vaccines and cutting-edge immunotherapies and stem-cell therapies under development. These profiles capture different aspects of core regulatory and functional processes at different scales of resolution from molecular and cellular to organismal. Systems approaches capture the complex and intricate interplay between these layers and scales.
View Article and Find Full Text PDFHuman respiratory syncytial virus (RSV) is a major cause of lower respiratory infection. Despite more than 60 years of research, there is no licensed vaccine. While B cell response is a major focus for vaccine design, the T cell epitope profile of RSV is also important for vaccine development.
View Article and Find Full Text PDFBackground: Pandemic influenza viruses may emerge from animal reservoirs and spread among humans in the absence of cross-reactive antibodies in the human population. Immune response to highly conserved T cell epitopes in vaccines may still reduce morbidity and limit the spread of the new virus even when cross-protective antibody responses are lacking.
Methods: We used an established epitope content prediction and comparison tool, Epitope Content Comparison (EpiCC), to assess the potential for emergent H1N1 G4 swine influenza A virus (G4) to impact swine and human populations.
Strategies that improve influenza vaccine immunogenicity are critical for the development of vaccines for pandemic preparedness. Hemagglutinin (HA)-specific CD4 T cell epitopes support protective B cell responses against seasonal influenza. However, in the case of avian H7N9, which poses a pandemic threat, HA elicits only weak neutralizing antibody responses in infection and vaccination without adjuvant.
View Article and Find Full Text PDFBackground: Two phase II trials (NCT00688753 and NCT00541008) reported efficacy data of sunitinib and everolimus in first-line treatment of metastatic papillary renal cell carcinoma (mpRCC). Although most patients receive sunitinib or a mammalian target of rapamycin (mTOR) inhibitor in first- and second-line treatment, the optimal strategy remained unknown.
Material And Methods: In 23 centres of the Groupe d'Etude des Tumeurs Urogénitales group, after centralised pathological review, we analysed retrospectively progression-free survival (PFS) of patients with mpRCC treated in first-line treatment (PFS-1) with sunitinib or everolimus (primary end-point), PFS in second-line treatment (PFS-2), overall survival (OS), objective response rate, disease control rate (DCR), overall sequence and prognostic factors for OS (secondary end-points).
The hurdles to effective blood stage malaria vaccine design include immune evasion tactics used by the parasite such as redundant invasion pathways and antigen variation among circulating parasite strains. While blood stage malaria vaccine development primarily focuses on eliciting optimal humoral responses capable of blocking erythrocyte invasion, clinically-tested (Pf) vaccines have not elicited sterile protection, in part due to the dramatically high levels of antibody needed. Recent development efforts with non-redundant, conserved blood stage antigens suggest both high antibody titer and rapid antibody binding kinetics are important efficacy factors.
View Article and Find Full Text PDFAn effective malaria vaccine must prevent disease in a range of populations living in regions with vastly different transmission rates and protect against genetically-diverse (Pf) strains. The protective efficacy afforded by the currently licensed malaria vaccine, Mosquirix™, promotes strong humoral responses to Pf circumsporozoite protein (CSP) 3D7 but protection is limited in duration and by strain variation. Helper CD4 T cells are central to development of protective immune responses, playing roles in B cell activation and maturation processes, cytokine production, and stimulation of effector T cells.
View Article and Find Full Text PDFWhen swine flu vaccines and circulating influenza A virus (IAV) strains are poorly matched, vaccine-induced antibodies may not protect from infection. Highly conserved T cell epitopes may, however, have a disease-mitigating effect. The degree of T cell epitope conservation among circulating strains and vaccine strains can vary, which may also explain differences in vaccine efficacy.
View Article and Find Full Text PDFImmunization with radiation-attenuated sporozoites (RAS) has been shown to protect against malaria infection, primarily through CD8 T cell responses, but protection is limited based on parasite strain. Therefore, while CD8 T cells are an ideal effector population target for liver stage malaria vaccine development strategies, such strategies must incorporate conserved epitopes that cover a large range of class I human leukocyte antigen (HLA) supertypes to elicit cross-strain immunity across the target population. This approach requires identifying and characterizing a wide range of CD8 T cell epitopes for incorporation into a vaccine such that coverage across a large range of class I HLA alleles is attained.
View Article and Find Full Text PDFNatural and vaccine-induced SARS-CoV-2 immunity in humans has been described but correlates of protection are not yet defined. T cells support the SARS-CoV-2 antibody response, clear virus-infected cells, and may be required to block transmission. In this study, we identified peptide epitopes associated with SARS-CoV-2 T-cell immunity.
View Article and Find Full Text PDFHistorically poor clinical results of tumor vaccines have been attributed to weakly immunogenic antigen targets, limited specificity, and vaccine platforms that fail to induce high-quality polyfunctional T cells, central to mediating cellular immunity. We show here that the combination of antigen selection, construct design, and a robust vaccine platform based on the Synthetically Modified Alpha Replicon RNA Technology (SMARRT), a self-replicating RNA, leads to control of tumor growth in mice. Therapeutic immunization with SMARRT replicon-based vaccines expressing tumor-specific neoantigens or tumor-associated antigen were able to generate polyfunctional CD4 and CD8 T cell responses in mice.
View Article and Find Full Text PDFNovel computational tools for swine vaccine development can expand the range of immunization approaches available to prevent economically devastating swine diseases and spillover events between pigs and humans. PigMatrix and EpiCC are two new tools for swine T cell epitope identification and vaccine efficacy analysis that have been integrated into an existing computational vaccine design platform named iVAX. The iVAX platform is already in use for the development of human vaccines, thus integration of these tools into iVAX improves and expands the utility of the platform overall by making previously validated immunoinformatics tools, developed for humans, available for use in the design and analysis of swine vaccines.
View Article and Find Full Text PDFThe outbreak of the 2019 Novel Coronavirus (SARS-CoV-2) rapidly spread from Wuhan, China to more than 150 countries, areas, or territories, causing staggering numbers of infections and deaths. In this study, bioinformatics analyses were performed on 5,568 complete genomes of SARS-CoV-2 virus to predict the T cell and B cell immunogenic epitopes of all viral proteins, which formed a systematic immune vulnerability landscape of SARS-CoV-2. The immune vulnerability and genetic variation profiles of SARS-CoV were compared with those of SARS-CoV and MERS-CoV.
View Article and Find Full Text PDFThe influenza hemagglutinin (HA) isolated from avian H7N9 influenza virus strains elicit weak immune responses. This low immunogenicity may be due to a regulatory T cell (T)-stimulating epitopes in HA from the H7N9 isolate A/Anhui/1/2013 (Anh/13). In this report, this T stimulating sequence was removed from the wild-type (WT) H7 HA amino acid sequence and replaced with a conserved CD4 + T cell stimulating sequences from human seasonal H3N2 strains and designed OPT1 H7 HA.
View Article and Find Full Text PDFQ-fever is a flu-like illness caused by Coxiella burnetii (Cb), a highly infectious intracellular bacterium. There is an unmet need for a safe and effective vaccine for Q-fever. Correlates of immune protection to Cb infection are limited.
View Article and Find Full Text PDFComputational vaccinology includes epitope mapping, antigen selection, and immunogen design using computational tools. Tools that facilitate the prediction of immune response to biothreats, emerging infectious diseases, and cancers can accelerate the design of novel and next generation vaccines and their delivery to the clinic. Over the past 20 years, vaccinologists, bioinformatics experts, and advanced programmers based in Providence, Rhode Island, USA have advanced the development of an integrated toolkit for vaccine design called iVAX, that is secure and user-accessible by internet.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDF