Publications by authors named "Moinak Dutta"

Zintl phases represent a class of compounds, mainly intermetallics, which are characterized by ionic and covalent bonds in the same crystal. Since its discovery in the late 1800s, Zintl phases have found their importance as an academic interest due to their fascinating structure as well as in industry due to their vast applicability. In recent years, the Zintl phase of metal chalcogenides has further demonstrated its ability as a promising thermoelectric material, primarily due to its intrinsically ultralow lattice thermal conductivity (κ).

View Article and Find Full Text PDF

A hallmark of typical structural transformations is an increase in symmetry upon heating due to entropic favourability. However, local symmetry breaking upon warming is recently evidenced in rare crystalline phases. Termed as emphanisis, the phenomenon implores exploration of fascinating thermodynamic nuances that drive unusual structural evolutions.

View Article and Find Full Text PDF

The long-range periodic atomic arrangement or the lack thereof in solids typically dictates the magnitude and temperature dependence of their lattice thermal conductivity (). Compared to crystalline materials, glasses exhibit a much-suppressed across all temperatures as the phonon mean free path reaches parity with the interatomic distances therein. While the occurrence of such glass-like thermal transport in crystalline solids captivates the scientific community with its fundamental inquiry, it also holds the potential for profoundly impacting the field of thermoelectric energy conversion.

View Article and Find Full Text PDF

Comprehension of chemical bonding and its intertwined relation with charge carriers and heat propagation through a crystal lattice is imperative to design compounds for thermoelectric energy conversion. Here, we report the synthesis of large single crystal of new p-type cubic AgSnSbTe which shows an innately ultra-low lattice thermal conductivity (κ ) of 0.47-0.

View Article and Find Full Text PDF

Metavalent bonding has attracted immense interest owing to its capacity to impart a distinct property portfolio to materials for advanced functionality. Coupling metavalent bonding to lone pair expression can be an innovative way to propagate lattice anharmonicity from lone pair-induced local symmetry-breaking via the soft -bonding electrons to achieve long-range phonon dampening in crystalline solids. Motivated by the shared chemical design pool for topological quantum materials and thermoelectrics, we based our studies on a three-dimensional (3D) topological insulator TlBiSe that held prospects for 6 dual-cation lone pair expression and metavalent bonding to investigate if the proposed hypothesis can deliver a novel thermoelectric material.

View Article and Find Full Text PDF

As the periodic atomic arrangement of a crystal is made to a disorder or glassy-amorphous system by destroying the long-range order, lattice thermal conductivity, κ, decreases, and its fundamental characteristics changes. The realization of ultralow and unusual glass-like κ in a crystalline material is challenging but crucial to many applications like thermoelectrics and thermal barrier coatings. Herein, we demonstrate an ultralow (~0.

View Article and Find Full Text PDF

Efficient manipulation of thermal conductivity and fundamental understanding of the microscopic mechanisms of phonon scattering in crystalline solids are crucial to achieve high thermoelectric performance. Thermoelectric energy conversion directly and reversibly converts between heat and electricity and is a promising renewable technology to generate electricity by recovering waste heat and improve solid-state refrigeration. However, a unique challenge in thermal transport needs to be addressed to achieve high thermoelectric performance: the requirement of crystalline materials with ultralow lattice thermal conductivity (κ).

View Article and Find Full Text PDF

Understanding the correlations of both the local and global structures with lattice dynamics is critical for achieving low lattice thermal conductivity (κ ) in crystalline materials. Herein, we demonstrate local cationic off-centring within the global rock-salt structure of AgSbSe by using synchrotron X-ray pair distribution function analysis and unravel the origin of its ultralow κ ≈0.4 W mK at 300 K.

View Article and Find Full Text PDF

The structural transformation generally occurs from lower symmetric to higher symmetric structure on heating. However, the formation of locally broken asymmetric phases upon warming has been evidenced in PbQ (Q = S, Se, Te), a rare phenomenon called , which has significant effect on their thermal transport and thermoelectric properties. (SnSe)(AgSbSe) crystallizes in rock-salt cubic average structure, with the three cations occupying the same Wycoff site (4a) and Se in the anion position (Wycoff site, 4b).

View Article and Find Full Text PDF

A remarkable decrease in the lattice thermal conductivity and enhancement of thermoelectric figure of merit were recently observed in rock-salt cubic SnTe, when doped with germanium (Ge). Primarily, based on theoretical analysis, the decrease in lattice thermal conductivity was attributed to local ferroelectric fluctuations induced softening of the optical phonons which may strongly scatter the heat carrying acoustic phonons. Although the previous structural analysis indicated that the local ferroelectric transition temperature would be near room temperature in [Formula: see text], a direct evidence of local ferroelectricity remained elusive.

View Article and Find Full Text PDF

Thermoelectric materials which can convert heat energy to electricity rely on crystalline inorganic solid state compounds exhibiting low phonon transport (i.e. low thermal conductivity) without much inhibiting the electrical transport.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used synchrotron X-ray pair distribution function and inelastic neutron scattering to explore the local structure and phonon vibrations, discovering an intrinsic "rattling" behavior in the Tl atoms.
  • * This rattling, linked to the ionically bonded Tl within a distorted cage structure, leads to significant phonon scattering and a short phonon lifetime (~0.66 ps), contributing to the compound's notably low thermal conductivity.
View Article and Find Full Text PDF

Understanding the mechanism that correlates phonon transport with chemical bonding and solid-state structure is the key to envisage and develop materials with ultralow thermal conductivity, which are essential for efficient thermoelectrics and thermal barrier coatings. We synthesized thallium selenide (TlSe), which is comprised of intertwined stiff and weakly bonded substructures and exhibits intrinsically ultralow lattice thermal conductivity (κ) of 0.62-0.

View Article and Find Full Text PDF

Owing to their intrinsically low thermal conductivity and chemical diversity, materials within the I-V-VI family, and especially AgBiSe, have recently attracted interest as promising thermoelectric materials. However, further investigations are needed in order to develop a more fundamental understanding of the origin of the low thermal conductivity in AgBiSe, to evaluate possible stereochemical activity of the 6s lone pair of Bi, and to further elaborate on chemical design approaches for influencing the occurring phase transitions. In this work, a combination of temperature-dependent X-ray diffraction, Rietveld refinements of laboratory X-ray diffraction data, and pair distribution function analyses of synchrotron X-ray diffraction data is used to tackle the influence of Sb substitution within AgBiSbSe (0 ⩽ ⩽ 0.

View Article and Find Full Text PDF

Efficiency in generation and utilization of energy is highly dependent on materials that have the ability to amplify or hinder thermal conduction processes. A comprehensive understanding of the relationship between chemical bonding and structure impacting lattice waves (phonons) is essential to furnish compounds with ultralow lattice thermal conductivity ( ) for important applications such as thermoelectrics. Here, we demonstrate that the n-type rock-salt AgPbBiSe exhibits an ultra-low of 0.

View Article and Find Full Text PDF

Understanding the complex phenomenon behind the structural transformations is a key requisite to developing important solid-state materials with better efficacy such as transistors, resistive switches, thermoelectrics, etc. AgCuS, a superionic semiconductor, exhibits temperature-dependent p-n-p-type conduction switching and a colossal jump in thermopower during an orthorhombic to hexagonal superionic transition. Tuning of p-n-p-type conduction switching in superionic compounds is fundamentally important to realize the correlation between electronic/phonon dispersion modulation with changes in the crystal structure and bonding, which might contribute to the design of better thermoelectric materials.

View Article and Find Full Text PDF