Publications by authors named "Mohssen Elbagory"

Soil salinization significantly impacts agricultural lands and crop productivity in the study area. Moreover, freshwater scarcity poses a significant obstacle to soil reclamation and agricultural production. Therefore, eco-friendly strategies must be adopted for agro-ecosystem sustainability under these conditions.

View Article and Find Full Text PDF

Sandy soil covers a significant portion of Egypt's total land area, representing a crucial agricultural resource for future food security and economic growth. This research adopts the hypothesis of maximizing the utilization of secondary products for soil improvement to reduce ecosystem pollution. The study focuses on assessing the impact of combining phosphogypsum and modified biochar as environmentally friendly soil amendments on loamy sand soil quality parameters such as soil organic carbon, cation exchange capacity, nutrient levels, and wheat yield.

View Article and Find Full Text PDF

Soil salinity has a negative impact on the biochemical properties of soil and on plant growth, particularly in arid and semi-arid regions. Using arbuscular mycorrhizal fungi () and foliar spray from compost tea as alleviating treatments, this study aimed to investigate the effects of alleviating salt stress on the growth and development of maize and wheat grown on a saline-sodic soil during the period of 2022/2023. Six treatments were used in the completely randomized factorial design experiment.

View Article and Find Full Text PDF

The enhancing effect of N-fixing bacterial strains in the presence of mineral N doses on maize plants in pots and field trials was investigated. The OT-H1 of 10 isolates maintained the total nitrogen, nitrogenase activities, IAA production, and detection of NH in their cultures. In addition, they highly promoted the germination of maize grains in plastic bags compared to the remainder.

View Article and Find Full Text PDF

Several activities in the agriculture sector lead to the accumulation of Nickel (Ni) in soil. Therefore, effective and economical ways to reduce soil bioavailability of Ni must be identified. Five isolates of Rhizobium leguminosarum biovar Viceae (ICARDA 441, ICARDA 36, ICARDA 39, TAL−1148, and ARC−207) and three bacterial strains (Bacillus subtilis, B.

View Article and Find Full Text PDF

Thirty bacterial isolates were tested on three different media for Poly-ß-hydroxybutyrate (PHB) production. The best bacterial isolates for producing PHB were screened and identified based on molecular biology; then, using three different alternative carbon sources (dried whey, sugar beet molasses and date molasses), physical properties were evaluated by Infrared (IR) spectrometry and Gas chromatography-mass spectrometry (GC-MS/MS) analysis. Our results showed that the best isolates identified based on molecular biology were MCCC 1A04098, NBRC 102611 and BIO-TAS2-2.

View Article and Find Full Text PDF

The use of phosphogypsum (PG) and plant growth-promoting rhizobacteria (PGPR) for agricultural purposes are good options to improve soil properties and increase crop yield. The objective of this study was to investigate the effect of different rates of PG (ton ha; 0 (PG1), 3 (PG2), 6 (PG3), and 9 (PG4)) combined with PGPR inoculation ( (control, T1), + (T2), + (T3), and +  (T4)) on soil properties, plant physiology, antioxidant enzymes, nutrient uptake, and yield of maize plants ( L., cv.

View Article and Find Full Text PDF

Water stress or soil salinity is considered the major environmental factor affecting plant growth. When both challenges are present, the soil becomes infertile, limiting plant productivity. In this work a field experiment was conducted during the summer 2019 and 2020 seasons to evaluate whether plant growth-promoting microbes (PGPMs) and nanoparticles (Si-ZnNPs) have the potential to maintain soybean growth, productivity, and seed quality under different watering intervals (every 11 (IW), 15 (IW) and 19 (IW) days) in salt-affected soil.

View Article and Find Full Text PDF

The continuity of traditional planting systems in the last few decades has encountered its most significant challenge in the harsh changes in the global climate, leading to frustration in the plant growth and productivity, especially in the arid and semi-arid regions cultivated with moderate or sensitive crops to abiotic stresses. Faba bean, like most legume crops, is considered a moderately sensitive crop to saline soil and/or saline water. In this connection, a field experiment was conducted during the successive winter seasons 2018/2019 and 2019/2020 in a salt-affected soil to explore the combined effects of plant growth-promoting rhizobacteria (PGPR) and potassium (K) silicate on maintaining the soil quality, performance, and productivity of faba bean plants irrigated with either fresh water or saline water.

View Article and Find Full Text PDF