Publications by authors named "Mohsin Vahid Khan"

Early detection of cancer biomarkers is crucial for effective diagnosis and treatment, prompting the development of an ultrasensitive label-free electrochemical immunosensor. In this study, we fabricated an ultrasensitive label-free electrochemical immunosensor using a glassy carbon electrode/gold nanoparticles (GCE/AuNPs) modification for quantification of osteopontin (OPN), an oncomarker. The surface features of the modified electrodes were confirmed using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods.

View Article and Find Full Text PDF

The increasing incidence of multidrug-resistant tuberculosis (MDR-TB) is one of the most challenging tasks in tuberculosis treatment. Conventional TB treatment regimens have proven ineffective in treating MDR-TB, thus demanding the development of new drugs followed by delivery systems. Bedaquiline, a novel anti-TB drug, has been reported to inhibit the ATP synthase required for the growth and replication of TB bacteria.

View Article and Find Full Text PDF

Diabetes is a metabolic disorder caused by high glucose levels, leading to serious threats such as diabetic neuropathy and cardiovascular diseases. One of the most reliable measures for controlling postprandial hyperglycemia is to reduce the glucose level by inhibiting enzymes in the digestive system, such as Alpha-Glucosidase and Alpha-Amylase. Here, we have investigated the use of inhibitors to inhibit carbohydrate metabolism in order to restrict glucose levels in diabetic patients.

View Article and Find Full Text PDF

In recent decades, there has been a concerning and consistent rise in the incidence of cancer, posing a significant threat to human health and overall quality of life. The transferrin receptor (TfR) is one of the most crucial protein biomarkers observed to be overexpressed in various cancers. This study reports on the development of a novel voltammetric immunosensor for TfR detection.

View Article and Find Full Text PDF

C-reactive protein (CRP) is produced by the liver in response to systemic inflammation caused by bacterial infection, trauma and internal organ failures. CRP serves as a potential biomarker in the precise diagnosis of cardiovascular risk, type-2 diabetes, metabolic syndrome, hypertension and various types of cancers. The pathogenic conditions indicated above are diagnosed by an elevated CRP level in the serum.

View Article and Find Full Text PDF

Amyloid fibrillation is associated with several human maladies, such as Alzheimer's, Parkinson's, Huntington's diseases, prions, amyotrophic lateral sclerosis, and type 2 diabetes diseases. Gaining insights into the mechanism of amyloid fibril formation and exploring novel approaches to fibrillation inhibition are crucial for preventing amyloid diseases. Here, we hypothesized that ligands capable of stabilizing the native state of query proteins might prevent protein unfolding, which, in turn, may reduce the propensity of proteins to form amyloid fibrils.

View Article and Find Full Text PDF

Alpha1-acid glycoprotein (AAG) is a major acute phase protein of human plasma. Binding of clofazimine to AAG is investigated using optical spectroscopy and molecular docking tools. We found significant quenching of intrinsic fluorescence of AAG upon the binding of clofazimine, binding mode is static with binding constant of 3.

View Article and Find Full Text PDF

Protein aggregation and amyloid fibrillation are responsible for several serious pathological conditions (like type II diabetes, Alzheimer's and Parkinson's diseases etc.) and protein drugs ineffectiveness. Therefore, a molecule that can inhibit the amyloid fibrillation and potentially clear amyloid fibrils is of great therapeutic value.

View Article and Find Full Text PDF

The newly synthesized unfolded polypeptide attains its functional and unique three-dimensional conformation through the process of protein folding for which several models have been proposed. The protein misfolding diseases include Alzheimer's, Parkinson's and Cataract which are result of formation of amyloid or amorphous aggregates, respectively. The distinction in morphology shows relation with the melting temperature (T).

View Article and Find Full Text PDF

Protein misfolding and aggregation lead to amyloid generation that in turn may induce cell membrane disruption and leads to cell apoptosis. In an effort to prevent or treat amyloidogenesis, large number of studies has been paying attention on breakthrough of amyloid inhibitors. In the present work, we aim to access the effect of two drugs, that is, acetylsalicylic acid and 5-amino salicylic acid on insulin amyloids by using various biophysical, imaging, cell viability assay, and computational approaches.

View Article and Find Full Text PDF

Numerous phenolic compounds have been reported in the last decade that have a good antioxidant property and interaction affinity towards mammalian serum albumins. In the present study, we have utilized mammalian serum albumins as a model protein to examine their comparative interaction property with polyphenolic compound tannic acid (TA) by using various spectroscopic and calorimetric methods We have also monitored the esterase and antioxidant activity of mammalian serum albumins in the absence and presence of TA. The obtain results recommended that the TA have a good binding affinity (∼10 to 10M) towards mammalian serum albumins and shows double sequential binding sites, which depends on the concentration of TA that induced the conformational alteration which responsible for the thermal stability of proteins.

View Article and Find Full Text PDF
Article Synopsis
  • The article discusses how protein-ligand interactions can lead to protein folding, misfolding, aggregation, and the need to inhibit these aggregates to treat diseases.
  • It highlights that stress can disturb the normal protein folding process, resulting in harmful aggregates that must be targeted for effective disease treatment.
  • The authors propose that using multiple inhibitors might be more effective in preventing and dismantling protein aggregates compared to single inhibitors, offering new insights for treating neurodegenerative diseases.
View Article and Find Full Text PDF

Protein aggregation into oligomers and mature fibrils are associated with more than 20 diseases in humans. The interactions between cationic surfactants dodecyltrimethylammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB) with varying alkyl chain lengths and bovine liver catalase (BLC) were examined by various biophysical approaches. The delicate coordination of electrostatic and hydrophobic interactions with protein, play imperative role in aggregation.

View Article and Find Full Text PDF

Erucic acid (EA) is one of the key fatty acids usually found in canola oil, mustard oil and rapeseed oil. Consumption of EA in primates was found to cause myocardial lipidosis and cardiac steatosis. To have an insight of the effect of EA in humans, we performed in vitro interaction studies of EA with the primary plasma protein, human serum albumin (HSA).

View Article and Find Full Text PDF

The aggregation phenomenon (amyloid and amorphous) is associated with several pathological complications in human, such as Alzheimer's, Parkinson's, Huntington, Cataract diseases, and Diabetes mellitus type 2. In the present study we are offering evidence and breaking the general belief with regard to the polyphenols action as protein aggregate inhibitors. Herein we confirm that tannic acid (TA) is not only an amyloid inducer, but also it switches one type of conformation, ultimately morphology, into another.

View Article and Find Full Text PDF

Nowadays, understanding of interface between protein and drugs has become an active research area of interest. These types of interactions provide structural guidelines in drug design with greater clinical efficacy. Thus, structural changes in catalase induced by clofazimine were monitored by various biophysical techniques including UV-visible spectrometer, fluorescence spectroscopy, circular dichroism, and dynamic light scattering techniques.

View Article and Find Full Text PDF

The binding interaction between clofarabine, an important anticancer drug and two important carrier proteins found abundantly in human plasma, Human Serum Albumin (HSA) and α-1 acid glycoprotein (AAG) was investigated by spectroscopic and molecular modeling methods. The results obtained from fluorescence quenching experiments demonstrated that the fluorescence intensity of HSA and AAG is quenched by clofarabine and the static mode of fluorescence quenching is operative. UV-vis spectroscopy deciphered the formation of ground state complex between anticancer drug and the two studied proteins.

View Article and Find Full Text PDF

Isoprenaline hydrochloride is a potential cardiovascular drug helps in the smooth functioning of the heart muscles. So, we have performed the binding study of ISO with BSA. This study was investigated by UV absorption, fluorescence, synchronous fluorescence, circular dichroism, etc.

View Article and Find Full Text PDF

Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized by rosin modified biocompatible cationic surfactant, has various biological applications in the field of pharmacy as well as used as food product additive. Here, we report biophysical insights in to the interaction mechanism of thymoquinone (TQ), copper nanoparticles (Cu-NPs) and QRMAE with bovine serum albumin (BSA) individually and also in complexes forms to determine their competitive binding affinity. We have also studied the aggregation-inhibition effects of Cu-NPs and TQ individually, as well as in complexes form in the presence of QRMAE surfactant which is responsible for induction of amorphous aggregates in BSA within hours of incubation at 65°C and physiological pH.

View Article and Find Full Text PDF

Studying amyloid associated neurodegenerative diseases is an active area of research. Cure for these diseases are still to be discovered. In the present study we have performed comprehensive biophysical and computational experiments showing levodopa not only significantly inhibits heat induced fibrillization of human serum albumin but also disaggregates preformed fibrils.

View Article and Find Full Text PDF

Under physical or chemical stress, proteins tend to form aggregates either highly ordered (amyloid) or unordered (amorphous) causing many pathological disorders in human and loss of proteins functionality in both laboratory conditions and industries during production and storage at commercial level. We investigated the effect of increasing temperature on Conalbumin (CA) and induced aggregation at 65°C. The enhanced Thioflavin T (ThT) and ANS (1-anilinonaphtalene 8-sulfonic acid) fluorescence intensity, show no shift on Congo red binding, additionally, transmission and scanning electron microscopy (TEM) (SEM) reveal amorphous morphology of the aggregate.

View Article and Find Full Text PDF

Neurodegenerative disorders are mainly associated with amyloid fibril formation of different proteins. Stem bromelain (SB), a cysteine protease, is known to exist as a molten globule state at pH 10.0.

View Article and Find Full Text PDF

In the present work, we have examined the binding parameters, thermodynamics, and stability of human serum albumin (HSA) isoforms at pH 7.4 and 9.0, using spectroscopic, calorimetric, and molecular docking methods in the presence of water-soluble camptothecin analog irinotecan hydrochloride (CPT-11).

View Article and Find Full Text PDF

Here we have used five non-fluorinated cosolvents (acetonitrile, ethanol, methanol, sec-butanol and ter-butanol) at increasing concentrations and analyzed their aggregation inducing behavior on interaction with conalbumin (CA). The aggregates were identified as amorphous by performing spectroscopic experiments like circular dichroism and dye binding assay. The amorphous aggregate contains rich β-sheet content, show insignificant increment in Thioflavin-T (ThT) fluorescence intensity but strong 1-anilino-8-napthalene sulfonate (ANS) binding with enhanced fluorescence intensity.

View Article and Find Full Text PDF