Publications by authors named "Mohsin Saeed"

MXenes (MXT), a subgroup of 2-dimensional (2D) materials, specifically comprise transition metal carbides, nitrides, and carbonitrides. They exhibit exceptional electrocatalytic and photocatalytic properties, making them well-suited for the detection and removal of pollutants from aqueous environments. Because of their high surface area and remarkable properties, they are being utilized in various applications, including catalysis, sensing, and adsorption, to combat pollution and mitigate its adverse effects.

View Article and Find Full Text PDF

Creating an innovative and environmentally friendly energy storage system is of vital importance due to the growing number of environmental problems and the fast exhaustion of fossil fuels. Energy storage using porous carbon composites generated from biomass has attracted a lot of attention in the research community. This is primarily due to the environmentally friendly nature, abundant availability in nature, accessibility, affordability, and long-term viability of macro/meso/microporous carbon sourced from a variety of biological materials.

View Article and Find Full Text PDF

Electrochemical sensors have been the subject of much research and development as of late, with several publications detailing new designs boasting enhanced performance metrics. That is, without a doubt, because such sensors stand out from other analytical tools thanks to their excellent analytical characteristics, low cost, and ease of use. Their progress has shown a trend toward seeking out novel useful nano structure materials.

View Article and Find Full Text PDF

The development of green hydrogen generation technologies is increasingly crucial to meeting the growing energy demand for sustainable and environmentally acceptable resources. Many obstacles in the advancement of electrodes prevented water electrolysis, long thought to be an eco-friendly method of producing hydrogen gas with no carbon emissions, from coming to fruition. Because of their great electrical conductivity, maximum supporting capacity, ease of modification in valence states, durability in hard environments, and high redox characteristics, transition metal oxides (TMOs) have recently captured a lot of interest as potential cathodes and anodes.

View Article and Find Full Text PDF

Soft actuators based on liquid crystalline elastomers (LCEs) are captivating significant interest because of their unique properties combining the programmable liquid crystalline molecular order and elasticity of polymeric materials. For practical applications, the ability to perform multimodal shape changes in a single LCE actuator at a subsecond level is a bottleneck. Here, we fabricate a monodomain LCE powered by electrostatic force, which enables fast multidirectional bending, oscillation, rotation, and complex actuation with a high degree of freedom.

View Article and Find Full Text PDF

In recent years, a new class of highly crystalline advanced permeable materials covalent-organic frameworks (COFs) have garnered a great deal of attention thanks to their remarkable properties, such as their large surface area, highly ordered pores and channels, and controllable crystalline structures. The lower physical stability and electrical conductivity, however, prevent them from being widely used in applications like photocatalytic activities and innovative energy storage and conversion devices. For this reason, many studies have focused on finding ways to improve upon these interesting materials while also minimizing their drawbacks.

View Article and Find Full Text PDF

The increased prevalence of the Internet of Things (IoT) and the integration of digital technology into our daily lives have given rise to heightened security risks and the need for more robust security measures. In response to these challenges, physical unclonable functions (PUFs) have emerged as promising solution, offering a highly secure method to generate unpredictable and unique random digital values by leveraging inherent physical characteristics. However, traditional PUFs implementations often require complex hardware and circuitry, which can add to the cost and complexity of the system.

View Article and Find Full Text PDF

The rapid advancement of refined nanostructures and nanotechnologies offers significant potential to boost research activities in hydrogen storage. Recent innovations in hydrogen storage have centered on nanostructured materials, highlighting their effectiveness in molecular hydrogen storage, chemical storage, and as nanoconfined hydride supports. Emphasizing the importance of exploring ultra-high-surface-area nanoporous materials and metals, we advocate for their mechanical stability, rigidity, and high hydride loading capacities to enhance hydrogen storage efficiency.

View Article and Find Full Text PDF

In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures.

View Article and Find Full Text PDF

Metal-based antimicrobials have the potential to profile sustainable solutions to infection care and health. In this study, we report the synthesis of rGO-ZnO hybrid nanostructures by a simple co-precipitation approach with various mass ratios of GO, and their antimicrobial potential was assessed. The structural analysis confirms the presence of a hexagonal wurtzite structure with peak shifting in hybrid nanostructures and increases in crystallite size (11-24 nm).

View Article and Find Full Text PDF

Polymer dispersed liquid crystals (PDLCs) have kindled a spark of interest because of their unique characteristic of electrically controlled switching. However, some issues including high operating voltage, low contrast ratio and poor mechanical properties are hindering their practical applications. To overcome these drawbacks, some measures were taken such as molecular structure optimization of the monomers and liquid crystals, modification of PDLC and doping of nanoparticles and dyes.

View Article and Find Full Text PDF

Aneurysms of the inferior vena cava (IVC) are exceedingly rare; less than 50 cases have been reported in the world literature. Owing to the paucity of data regarding the natural history of IVC aneurysms, there is no consensus on their treatment. This case report describes the evaluation of an IVC aneurysm in a 56-year-old male, briefly discusses the embryologic development of the IVC, and revisits the question of whether surgical intervention is indicated in these patients.

View Article and Find Full Text PDF