Publications by authors named "Mohsin A Bhat"

We present the synthesis of a novel benzimidazolium-based surface active ionic liquid (SAIL), 3-dodecyl-1-3λ-benzo[]imidazole chloride, a SAIL with excellent surface activity and self-aggregation tendency whose aqueous micellar solutions offer exceptional solubilizing capacity and electrocatalytic performance for efficient electrocarboxylation of halocarbons.

View Article and Find Full Text PDF

Transition metal centers dispersed over nitrogen-doped carbon (M-NC) supports have been widely explored for electrocatalytic reactions; however, sparsely reported for electrochemical nitrogen reduction reaction (ENRR). Particularly, the single-atom catalysts (SACs) have shown reasonable ammonia yield rate and faradaic efficiency (FE), but their complex synthesis and low durability for long-term electrocatalysis runs restrict their use on a larger scale. Importantly, the catalytic active sites in metal nanostructured-based M-NC catalysts toward enhanced N adsorption and activation are still not clear as they are highly challenging to reveal.

View Article and Find Full Text PDF

Developing an efficient, selective, and stable electrocatalysis system for the electrocatalytic N reduction reaction (ENRR) is a promising strategy for the green and sustainable production of ammonia. The activity, selectivity, and stability of various electrocatalysts in different electrolyte solvents, mainly acidic and alkaline electrolytes, are commonly compared in the literature. However, a mechanistic insight into the effect of these electrolytes on ENRR activity is lacking.

View Article and Find Full Text PDF

Designing molecular cages for atomic/molecular scale guests is a special art used by material chemists to harvest the virtues of the otherwise vile idea known as "the cage". In recent years, there has been a notable surge in research investigations focused on the exploration and utilization of the distinct advantages offered by this art in the advancement of efficient and stable bio-electrocatalysts. This usually is achieved through encapsulation of biologically accessible redox proteins within specifically designed molecular cages and matrices.

View Article and Find Full Text PDF

Facile access to new one-walled -substituted phenylboronic acid-functionalized calix[4]pyrrole (C4P) has been revealed for the first time, starting from cost-effective and easily accessible materials. The structures of both the intermediate dipyrromethane (DPM) and the targeted functionalized C4P have been confirmed by means of H-NMR, C-NMR, IR, and HRMS spectral data. The voltammetric investigations of the functionalized C4P films cast over a glassy carbon electrode (C4P-GCE) clearly establish the redox stability and redox accessibility of the boronic acid functional moiety present in the C4P framework.

View Article and Find Full Text PDF

Critical micelle concentration () is a key parameter of generally used surfactants, and many experimental techniques like tensiometry, conductivity, spectrophotometry, fluorometry, etc. for its determination have been reported. However, these contemporary methods for determination are tedious, are time-consuming, are sensitive, and require sophisticated instrumentation.

View Article and Find Full Text PDF

Herein, we report the results from our extensive voltammetric investigations designed to explore, assess and explain the electrocatalytic performance of reduced graphene oxide supported metal nano-deposits toward the electro-dehalogenation of halocarbons in room temperature ionic liquids (RTILs). Specifically, we investigated the electro-reductive dechlorination of the model halocarbon, carbon tetrachloride over glassy carbon electrode (GCE) and palladium-graphene (Pd-Gr), silver-graphene (Ag-Gr) and palladium-silver-graphene (PdAg-Gr) nanocomposites in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][NTf]). Analysis of the voltammetric data in light of Marcus-Hush formulation reveals that the electro-reductive cleavage of the C-Cl bond of CCl over GCE in [BMIM][NTf] follows a sticky dissociative electron transfer (SDET) pathway.

View Article and Find Full Text PDF

Herein, we demonstrate that the catalytic performance of imidazolium-based surface-active ionic liquid (SAIL) micelles can be significantly enhanced through the addition of an appropriate type and amount of intelligently conceived amphiphile to form mixed micelles. Specifically, we show that the catalytic performance of 1-dodecyl-3-methyl imidazolium chloride (DDMIMCl) micelles toward the reductive degradation of rhodamine B (RhB), a carcinogenic dye extensively used in multiple industrial applications, can be appreciably boosted through addition of Brij56, a nonionic surfactant. Detailed kinetic investigations on the catalytic performance of pre- and post-micellar concentrations of DDMIMCl and its mixed micelles with Brij56 over various mole fractions, toward the reductive degradation of RhB, are presented.

View Article and Find Full Text PDF

Here, we present fabrication of Graphene oxide (GO) supported Cu/Cu O nano-electrodeposits which can efficiently and selectively electroreduce CO into ethylene with a faradaic efficiency (F.E) of 34% and a conversion rate of 194 mmol g h at -0.985 V RHE.

View Article and Find Full Text PDF

The present study was designed to explore the hydrophobicity and concentration dependence of imidazolium based surface active ionic liquids (SAILs) effects on the structural-functional integrity of proteins. Specifically, we investigated the impact of SAILs viz. 1-octyl-3-methylimidazolium dodecylbenzenesulfonate ([OMIM][DBS]) and 1-dodecyl-3-methylimidazolium dodecylbenzenesulfonate ([DDMIM][DBS]) on activity, structure and stability of lysozyme.

View Article and Find Full Text PDF

Recent reports about the promising and tunable electrocatalytic activity and stability of nanoalloys have stimulated an intense research activity toward the design and synthesis of homogeneously alloyed novel bimetallic nanoelectrocatalysts. We herein present a simple one-pot facile wet-chemical approach for the deposition of high-quality bimetallic palladium-silver (PdAg) homogeneous nanoalloy crystals on reduced graphene (Gr) oxide sheets. Morphological, structural, and chemical characterizations of the so-crafted nanohybrids establish a homogeneous distribution of 1:1 PdAg nanoalloy crystals supported over reduced graphene oxide (PdAg-Gr).

View Article and Find Full Text PDF

Electrodeposition is an important approach that can produce functional compound materials by assembling multiple species at the electrode surface. However, a fundamental understanding of the electrodeposition mechanism has been limited by its complexity and is often gained only through ex situ studies of deposited materials. Here we report on the application of scanning electrochemical microscopy (SECM) to enable the in situ, real-time, and quantitative study of electrodeposition and electrodissolution.

View Article and Find Full Text PDF

The impact of temperature-induced changes in solvent dynamics on the diffusion coefficient and standard rate constant k for heterogeneous electron transfer (ET) of ethylferrocene (EFc) in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF ]) is investigated. The results are analysed to understand the impact of solvent-dynamic control, solute-solvent interactions and solvent friction on the transport of redox probes and k . Concentration dependence of the diffusion coefficient of EFc in [BMIM][PF ] is observed.

View Article and Find Full Text PDF

The thermodynamics and kinetics of the chemical and electrochemical charging of a catalyst surface are very important to understand its applicability as a catalyst material, particularly in redox catalysis. Through the present study, we hereby communicate the results obtained from our detailed investigations related to the effect of chemical charging on the plasmonic behavior of silver metal nanoparticles (Ag MNPs) as redox catalysts. Two different batches of Ag MNPs were prepared through thermally assisted chemical reduction of silver ions.

View Article and Find Full Text PDF

The absolute electronic energy levels in silver indium sulfide (AIS) nanocrystals (NCs) with varying compositions and crystallographic phases have been determined by using cyclic voltammetry. Different crystallographic phases, that is, metastable cubic, orthorhombic, monoclinic, and a mixture of cubic and orthorhombic AIS NCs, were studied. The band gap values estimated from the cyclic voltammetry measurements match well with the band gap values calculated from the diffuse reflectance spectra measurements.

View Article and Find Full Text PDF

Herein we report an electrochemical approach to establish the presence of silver oxides in silver-reduced graphene oxide (Ag-rGO) nanocomposites synthesised under alkaline conditions. The recorded electrochemical signatures, further supported and validated by UV-Vis spectroscopy, XRD and TEM analysis, clearly establish the presence of an oxide phase of silver in the nanodimensional silver present in Ag-rGO. The Ag-rGO was tested for its electrocatalytic and electrosensing activity for hydroquinone (H2Q) and ascorbic acid (AA).

View Article and Find Full Text PDF

In the first of its kind we herein report the results of our studies undertaken on the micellization behaviour of imidazolium based surface active ionic liquids (SAILs) to prove that their critical micelle concentration (cmc) can be estimated through ultraviolet-visible (UV-vis) spectroscopy without using any external probe. Tensiometric and spectrophotometric investigations of a series of freshly prepared SAILs viz. 1-octyl-3-methylimidazolium chloride ([OMIM][Cl]), 1-octyl-3-methylimidazolium dodecylsulphate ([OMIM][DS]), 1-octyl-3-methylimidazolium benzoate ([OMIM][Bz]), 1-octyl-3-methylimidazolium salicylate ([OMIM][Sc]), 1-octyl-3-methylimidazolium acetate ([OMIM][Ac]) are presented as a case study in support of the said claim.

View Article and Find Full Text PDF

A pseudo-indicator electrode based potentiometric method for estimation of non-redox metal ions is presented. In the proposed method, nature and concentration specific impact of analyte over the redox potential of ideally polarisable Pt/pregenerated-redox-couple interface forms the basis of quantification. Utility of the method in estimation of six non-redox metal ions viz.

View Article and Find Full Text PDF

Electrodics of CCl4 reduction in 1-butyl-3-methylimmidazolium tetrafluoroborate [BMIM][BF4] room temperature ionic liquid (RTIL) is reported. A convolutive analysis of the cyclic voltammograms suggests that CCl4 electroreduction follows stepwise (outer sphere) dissociative electron transfer pathway, rather than the sticky dissociative (inner sphere) electron transfer, as in the case of conventional organic solvents. This difference in the mechanism of electron transfer initiated bond cleavage is attributed to the solvent specific effects, namely, stabilization of CCl4*- intermediate radical anion in RTIL, which in turn decreases the electron transfer rate and thus the carbon-halogen bond cleavage rates.

View Article and Find Full Text PDF