This work investigates the feasibility of net shape manufacturing of parts using water-atomized (WA) low-alloy steel with comparable densities to conventional powder metallurgy parts via binder jetting additive manufacturing (BJAM) and supersolidus liquid phase sintering (SLPS). In this study, a modified water-atomized powder grade with similar composition as MPIF FL-4405 was printed and pressure-less sintered under a 95% N-5% H atmosphere. Combinations of two different sintering schedules (direct-sintering and step-sintering) and three different heating rates (1, 3, and 5 °C/min) were applied to study the densification, shrinkage, and microstructural evolution of BJAM parts.
View Article and Find Full Text PDFIn the present study, various electrochemical tests were used to investigate the passive and electrochemical response of annealed and nano-grained commercial pure Titanium in Ringer's physiological solution at 37°C. Nano-grained pure Titanium, which typically has an average grain size of 90±5nm, was obtained by six-cycle accumulative roll bonding process. Polarization and electrochemical impedance spectroscopy plots illustrated that as a result of grain refinement process, the passive response of the nano-grained sample was improved compared to that of its coarse-grained counterpart in Ringer's physiological solution.
View Article and Find Full Text PDF