At the core of an ideal single-photon detector is an active material that absorbs and converts every incident photon to a discriminable signal. A large active material favours efficient absorption, but often at the expense of conversion efficiency, noise, speed and timing accuracy. In this work, short (8.
View Article and Find Full Text PDFWe have experimentally compared the critical current, dark count rate and photo-response of 100nm wide superconducting nanowires with different bend designs. Enhanced critical current for nanowires with optimally rounded bends, and thus with no current crowding, are observed. Furthermore, we find that the optimally designed bend significantly reduces the dark counts without compromising the photo-response of the device.
View Article and Find Full Text PDFSingle Photon Detectors are fundamental to quantum optics and quantum information. Superconducting nanowire detectors exhibit high performance in free-running mode, but have a limited maximum count rate. By exploiting a bistable superconducting nanowire system, we demonstrate the first gated-mode operation of these detectors for a large active area single element device at 625MHz, one order of magnitude faster than its free-running counterpart.
View Article and Find Full Text PDFSingle Photon Detectors are integral to quantum optics and quantum information. Superconducting Nanowire based detectors exhibit new levels of performance, but have no accepted quantum optical model that is valid for multiple input photons. By performing Detector Tomography, we improve the recently proposed model [M.
View Article and Find Full Text PDF