Publications by authors named "Mohsen Ghaffari-Miab"

This paper proposes a three-dimensional metamaterial absorber based on a resistive film patch array to develop a low-cost, lightweight absorber for curved surfaces. An excellent absorption over a large frequency band is achieved through two different yet controllable mechanisms; in the first mechanism, a considerable attenuation in the wave power is achieved via graphite resistive films. The absorption is then intensified through magnetic dipoles created by the surface currents, leading to absorption peaks.

View Article and Find Full Text PDF

A biosensor platform based on the plasmonic resonance of graphene in the terahertz (THz) range (0.1 to 10 THz) is designed and investigated. The initial design is to create a nanofluidic channel as a sensing layer in the substrate of a biosensor grounded by metal.

View Article and Find Full Text PDF

For sensing and imaging applications of surface-enhanced Raman scattering (SERS), one needs a substrate with the capability of generating a consistent and uniform response and increased signal enhancement. To this goal, we propose a photonic-crystal (PC) structure capable of supporting large field enhancement due to its high quality-factor resonance. Moreover, we demonstrate that the interaction of two modes of this all-dielectric PC can provide an almost uniform field enhancement across the unit cell of the PC.

View Article and Find Full Text PDF

Double-stage delay-multiply-and-sum (DS-DMAS) is an algorithm proposed for photoacoustic image reconstruction. The DS-DMAS algorithm offers a higher contrast than conventional delay-and-sum and delay-multiply and-sum but at the expense of higher computational complexity. Here, we utilized a compute unified device architecture (CUDA) graphics processing unit (GPU) parallel computation approach to address the high complexity of the DS-DMAS for photoacoustic image reconstruction generated from a commercial light-emitting diode (LED)-based photoacoustic scanner.

View Article and Find Full Text PDF

In this paper, the distinctive dispersion characteristic of hybrid plasmonic waveguides is exploited for designing ultra-wideband directional couplers. It is shown that by using optimized geometrical dimensions for hybrid plasmonic waveguides, nearly wavelength-independent directional couplers can be achieved. These broadband directional couplers are then used to design Mach-Zehnder-interferometer-based switches.

View Article and Find Full Text PDF