Publications by authors named "Mohsen Ghaderi Goran Abad"

We investigate the generation and control of the reverse saturable absorption (RSA) and optical limiting (OL) at microwave (mw) range in high-Q single-crystal diamond mechanical resonator (DMR) embedded with many nitrogen-vacancy (NV) centers. The strain-induced acoustic modes enable mechanical manipulation of NV centers. On the basis of strain-coupling mechanism, it is shown that the saturable absorption (SA) switches to the RSA by applying the acoustic field, leading to induce the OL in the diamond through the cross-Kerr effect.

View Article and Find Full Text PDF

We investigate the reverse saturable absorption (RSA) and optical limiting (OL) in a three-level V-type quantum system considering the effect of the spontaneously generated coherence (SGC). It is shown that in the absence of the SGC effect, the saturable absorption (SA) is dominant in the system. By taking into account the SGC effect, we prove that the SA dramatically switches to the RSA.

View Article and Find Full Text PDF

Laguerre-Gaussian (LG) beams contain a helical phase front with a doughnut-like intensity profile. We use the LG beam to introduce a rather simple method for generation of a vector beam (VB), a beam with spatially-dependent polarization in the beam cross section, via the nonlinear magneto-optical rotation (NMOR). We consider the NMOR of the polarization of a linearly polarized probe field passing through an inverted Y-type four-level quantum system interacting with a LG control field and a static magnetic field.

View Article and Find Full Text PDF

We study the nonlinear magneto-optical rotation (MOR) of a linearly polarized microwave probe field passing through many nitrogen-vacancy (NV) centers embedded in a high-Q single-crystal diamond mechanical resonator. On the basis of the strain-mediated coupling mechanism, we establish a three-level closed-loop system in the ground states of the NV center in the presence of a static magnetic field. It is shown that by applying an acoustic field, the birefringence is induced in the system through the cross-Kerr effect, so that the probe field is transmitted with a high intensity and rotated polarization plane by 90 degrees.

View Article and Find Full Text PDF

Generation and control of the reverse saturable absorption (RSA) and optical limiting (OL) are investigated in a four-level Y-type quantum system. It is demonstrated that the applied laser fields induce the RSA and it can be coherently controlled by either intensity or frequency of the applied laser fields. The effect of the static magnetic field on the induced RSA is studied and we obtain that it has a constructive role in determining the intensity range in which the OL is established in the system.

View Article and Find Full Text PDF

We theoretically investigate magneto-optical rotation (MOR) of a linearly polarized probe field in the four-level N-type cold atoms. By applying a static magnetic field and a weak coupling field, it is shown that the birefringence enhancement is induced in the system. Moreover, we show that the static magnetic field has a major role in switching the dichroism to enhanced birefringence in the system.

View Article and Find Full Text PDF