Shells of Pd and Pt were synthesized on Au nanoparticles by electrodeposition, leading to controllable size and optical properties. This approach yielded core-shell structures with good homogeneity in size after the optimization of electrochemical parameters such as deposition current and charge transfer, as well as nanoparticle surface treatment. Dark field scattering microscopy and spectroscopy were used to track changes in the optical response of individual particles during deposition.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
March 2023
Bimetallic Cu on Au nanoparticles with controllable morphology and optical properties were obtained via electrochemical synthesis. In particular, multilobed structures with good homogeneity were achieved through the optimization of experimental parameters such as deposition current, charge transfer, and metal ion concentration. A hyperspectral dark field scattering setup was used to characterize the electrodeposition on a single particle level, with changes in localized surface plasmon resonance frequency correlated with deposition charge transfer and amount of Cu deposited as determined by electron microscopy.
View Article and Find Full Text PDF