Publications by authors named "Mohsen Beladi-Mousavi"

Optimizing the reactivity and selectivity of single-atom catalysts (SACs) remains a crucial yet challenging issue in heterogeneous catalysis. This study demonstrates selective catalysis facilitated by a polyoxometalates-mediated electronic interaction (PMEI) in a Pt single-atom catalyst supported on CeO modified with Keggin-type phosphotungstate acid (HPW), labeled as Pt/CeO-HPW. The PMEI effect originates from the unique arrangement of isolated Pt atoms and HPW clusters on the CeO support.

View Article and Find Full Text PDF

Graphene has gained substantial research interest in many fields due to its remarkable properties among many other two-dimensional materials. In this study, we propose a wireless electrochemical approach, bipolar electrochemistry, for the precise modification of single layers of graphene at predefined locations, such as distinct edges or corners, with a variety of metals or polymers, thus enabling the elaboration of multi-functional monolayer graphene sheets. We illustrate the concept e.

View Article and Find Full Text PDF

Graphene monolayers have interesting applications in many fields due to their intrinsic physicochemical properties, especially when they can be postmodified with high precision. Herein, we describe the highly site-selective functionalization of freestanding graphene monolayers with platinum (Pt) clusters by bipolar electrochemistry. The deposition of such metal spots leads to catalytically active hybrid two-dimensional (2D) nanomaterials.

View Article and Find Full Text PDF

Spatial confinement of chemical reactions or physical effects may lead to original phenomena and new properties. Here, the generation of electrochemiluminescence (ECL) in confined free-standing 2D spaces, exemplified by surfactant-based air bubbles is reported. For this, the ultrathin walls of the bubbles (typically in the range of 100-700 nm) are chosen as a host where graphene sheets, acting as bipolar ECL-emitting electrodes, are trapped and dispersed.

View Article and Find Full Text PDF

Bipolar electrochemistry (BE) is a wireless electrochemical technique, which enables asymmetric electroactivity on the surface of conducting objects. This technique has been extensively studied for different electrochemical applications, including synthesis, separation, sensing, and surface modification. Here, we employ BE for imaging the transient electrochemical activity of different redox species with high accuracy via an array of light-emitting diodes having different lengths.

View Article and Find Full Text PDF

The surface of steel S235 was oxidized by Cl2 gas and checked for its electrocatalytic efficiency regarding oxygen formation in aqueous solution. If exposed to humid Cl2 gas for 110 min, steel S235 became an electrocatalyst that exhibits an overpotential for the oxygen evolution reaction (OER) of 462 mV at 1 mA cm(-2) at pH 7. The OER activity of the same sample at pH 13 was moderate (347 mV overpotential at 2.

View Article and Find Full Text PDF