The physical properties as well as thermal and electrical stability of copper particles can be improved by surface protection, which mainly depends on the coating material. Our study was, therefore, focused on the rheological, thermal, mechanical and electrical characterization of polymer composites by comparing uncoated (Cu), silver-coated (Cu@Ag) and silica-coated (Cu@Si) copper flakes in low-density polyethylene at various volume concentrations (up to 40%). Interactions among particles were investigated by rheological properties, as these indicate network formation (geometrical entanglement), which is important for mechanical reinforcement as well as establishing an electric pathway (electrical percolation).
View Article and Find Full Text PDFPolyisobutylene (PIB) is commonly used as a primary sealant in multi-layer insulating glazing elements, where temperatures often exceed 100 °C. At such conditions, PIB undergoes structural changes, causing different relaxation dynamics and leading to decreased lifetime of the material. Understanding thermal behavior is therefore imperative for achieving effective insulation of these materials for long-term use in insulating application.
View Article and Find Full Text PDFFilament formulation for FDM is a challenging and time-consuming process. Several pharmaceutical polymers are not feedable on their own. Due to inadequate filament formulation, 3D printed tablets can also exhibit poor uniformity of tablet attributes.
View Article and Find Full Text PDFTo decrease the amount of plastic waste, the use of recycling techniques become a necessity. However, numerous recycling cycles result in the mechanical, thermal, and chemical degradation of the polymer, which leads to an inefficient use of recycled polymers for the production of plastic products. In this study, the effects of recycling and the improvement of polymer performance with the incorporation of an additive into recycled polypropylene was studied by spectroscopic, rheological, optical, and mechanical characterization techniques.
View Article and Find Full Text PDFVersatile product protective coatings that deliver faster drying times and shorter minimum overcoat intervals that enable curing at faster line speeds and though lower energy consumption are often desired by coating manufacturers. Product protective coatings, based on silsesquioxane-modified diglycidyl ether of bisphenol-A (DGEBA) epoxy resin, are prepared through a glycidyl ring-opening polymerization using dicyandiamide (DICY) as a curing agent. As silsesquioxane modifier serves the octaglycidyl-polyhedral oligomeric silsesquioxane (GlyPOSS).
View Article and Find Full Text PDFThe number of commercial products claiming self-cleaning properties is rising and testing of long-term activity and durability of such coatings needs to be addressed more. The time-dependent changes of different characteristics like haze, transparency, and color are essential for transparent glazing materials. Herein, we aimed to examine whether the laboratory results obtained on the Zr-modified-titania-silica (TiZr) self-cleaning materials would translate to larger-scale outdoor-exposed testing.
View Article and Find Full Text PDFThin electrochromic coatings were obtained by co-grinding the mTiA particle aggregates (300 nm in size) with open-corner heptaisobutyl trisilanol POSS (T(8) IB(7)(OH)(3) POSS) acting as dispersant. After the addition of titanium tetraisopropoxide (3-5%) the mTiA pigment dispersion was deposited on FTO glass and plastic ITO PET foils and coatings were obtained by thermal treatment at 150 °C. Optical transmittance and luminous haze from 2 to 6% of the coatings were determined from the corresponding UV-Vis spectra.
View Article and Find Full Text PDF