Publications by authors named "Mohitosh Bhadra"

Visible light-mediated photocatalytic organic transformation has drawn significant attention as an alternative process for replacing thermal reactions. Although precious metal/organic dyes based homogeneous photocatalysts have been developed, their toxic and nonreusable nature makes them inappropriate for large-scale production. Therefore, we have synthesized a triazine and a keto functionalized nonmetal based covalent organic framework (TpTt) for heterogeneous photocatalysis.

View Article and Find Full Text PDF

Flexible supercapacitors in modern electronic equipment require light-weight electrodes, which have a high surface area, precisely integrated redox moieties, and mechanically strong flexible free-standing nature. However, the incorporation of the aforementioned properties into a single electrode remains a great task. Herein, we could overcome these challenges by a facile and scalable synthesis of the convergent covalent organic framework (COF) free-standing flexible thin sheets through solid-state molecular baking strategy.

View Article and Find Full Text PDF

The development of nanoparticle-polymer-hybrid-based heterogeneous catalysts with high reactivity and good recyclability is highly desired for their applications in the chemical and pharmaceutical industries. Herein, we have developed a novel synthetic strategy by choosing a predesigned metal-anchored building block for in situ generation of metal (Pd) nanoparticles in the stable, porous, and crystalline covalent organic framework (COF), without using conventional reducing agents. In situ generation of Pd nanoparticles in the COF skeleton is explicitly confirmed from PXRD, XPS, TEM images, and N NMR spectral analysis.

View Article and Find Full Text PDF

An intramolecular dehydrogenative (sp(3))C-O bond formation in salicylamides can be initiated by an active Cu/O2 species to generate pharamaceutically relevant dihydro-oxazinones. Experimental findings suggest that stereoelectronic parameters in both coupling partners are controlling factors for site selectivity in bond formation. Mechanistic investigations including isotope labeling, kinetic studies helped to propose a catalytic cycle.

View Article and Find Full Text PDF