To achieve the accurate recognition of biomarkers or pathological characteristics within tissues or cells, in situ detection using biosensor technology offers crucial insights into the nature, stage, and progression of diseases, paving the way for enhanced precision in diagnostic approaches and treatment strategies. The implementation of needle-shaped biosensors (N-biosensors) presents a highly promising method for conducting in situ measurements of clinical biomarkers in various organs, such as in the brain or spinal cord. Previous studies have highlighted the excellent performance of different N-biosensor designs in detecting biomarkers from clinical samples in vitro.
View Article and Find Full Text PDFPlatinum (Pt) is the metal of choice for electrodes in implantable neural prostheses like the cochlear implants, deep brain stimulating devices, and brain-computer interfacing technologies. However, it is well known since the 1970s that Pt dissolution occurs with electrical stimulation. More recent clinical and in vivo studies have shown signs of corrosion in explanted electrode arrays and the presence of Pt-containing particulates in tissue samples.
View Article and Find Full Text PDFElectrical neuromodulation is an established non-pharmacological treatment for chronic pain. However, existing devices using pulsatile stimulation typically inhibit pain pathways indirectly and are not suitable for all types of chronic pain. Direct current (DC) stimulation is a recently developed technology which affects small-diameter fibres more strongly than pulsatile stimulation.
View Article and Find Full Text PDFCurrent retinal prosthetics are limited in their ability to precisely control firing patterns of functionally distinct retinal ganglion cell (RGC) types. The aim of this study was to characterise RGC responses to continuous, kilohertz-frequency-varying stimulation to assess its utility in controlling RGC activity.We usedpatch-clamp experiments to assess electrically-evoked ON and OFF RGC responses to frequency-varying pulse train sequences.
View Article and Find Full Text PDFPhotoreceptor loss and inner retinal network remodeling severely impacts the ability of retinal prosthetic devices to create artificial vision. We developed a computational model of a degenerating retina based on rodent data and tested its response to retinal electrical stimulation. This model includes detailed network connectivity and diverse neural intrinsic properties, capable of exploring how the degenerated retina influences the performance of electrical stimulation during the degeneration process.
View Article and Find Full Text PDFOptimization of retinal prostheses requires preclinical animal models that mimic features of human retinal disease, have appropriate eye sizes to accommodate implantable arrays, and provide options for unilateral degeneration so as to enable a contralateral, within-animal control eye. In absence of a suitable non-human primate model and shortcomings of our previous feline model generated through intravitreal injections of Adenosine Triphosphate (ATP), we aimed in the present study to develop an ATP induced degeneration model in the rabbit. Six normally sighted Dutch rabbits were monocularly blinded with this technique.
View Article and Find Full Text PDFOptimal stimulus parameters for epiretinal prostheses have been investigated by analyzing retinal ganglion cell (RGC) spiking responses to white-noise electrical stimulation, through a spike-triggered average (STA) analysis technique. However, it is currently unknown as to activation of which retinal cells contribute to features of the STA. We conducted whole-cell patch clamping recordings in ON and OFF RGCs in response to white-noise epiretinal electrical stimulation by using different inhibitors of synaptic transmission in a healthy retina.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Modulation of functionally distinct nerve fibers with bioelectronic devices provides a therapeutic opportunity for various diseases. In this study, we began by developing a computational model including four major subtypes of myelinated fibers and one unmyelinated fiber. Second, we used an intrafascicular electrode to perform kHz-frequency electric stimulation to preferentially modulate a population of fibers.
View Article and Find Full Text PDFIntroduction: A hallmark of photoreceptor degenerations is progressive, aberrant remodeling of the surviving retinal neurons and glia following photoreceptor loss. The exact relationship between neurons and glia remodeling in this late stage of retinal degeneration, however, is unclear. This study assessed this by examining Müller cell dysfunction via glutamine synthetase immunoreactivity and its spatial association with retinal neuron subpopulations through various cell markers.
View Article and Find Full Text PDFPurpose: Accurate mapping of phosphene locations from visual prostheses is vital to encode spatial information. This process may involve the subject pointing to evoked phosphene locations with their finger. Here, we demonstrate phosphene mapping for a retinal implant using eye movements and compare it with retinotopic electrode positions and previous results using conventional finger-based mapping.
View Article and Find Full Text PDFA major reason for poor visual outcomes provided by existing retinal prostheses is the limited knowledge of the impact of photoreceptor loss on retinal remodelling and its subsequent impact on neural responses to electrical stimulation. Computational network models of the neural retina assist in the understanding of normal retinal function but can be also useful for investigating diseased retinal responses to electrical stimulation.We developed and validated a biophysically detailed discrete neuronal network model of the retina in the software package NEURON.
View Article and Find Full Text PDFPurpose: To report the long-term observations of the electrode-tissue interface and perceptual stability in humans after chronic stimulation with a 44-channel suprachoroidal retinal implant.
Methods: Four subjects (S1-4) with end-stage retinitis pigmentosa received the implant unilaterally (NCT03406416). Electrode impedances, electrode-retina distance (measured using optical coherence tomography imaging), and perceptual thresholds were monitored up to 181 weeks after implantation as the subjects used the prosthesis in the laboratory and in daily life.
. Visual outcomes provided by present retinal prostheses that primarily target retinal ganglion cells (RGCs) through epiretinal stimulation remain rudimentary, partly due to the limited knowledge of retinal responses under electrical stimulation. Better understanding of how different retinal regions can be quantitatively controlled with high spatial accuracy, will be beneficial to the design of micro-electrode arrays and stimulation strategies for next-generation wide-view, high-resolution epiretinal implants.
View Article and Find Full Text PDFPurpose: Artificial intelligence (AI) techniques are increasingly being used to classify retinal diseases. In this study we investigated the ability of a convolutional neural network (CNN) in categorizing histological images into different classes of retinal degeneration.
Methods: Images were obtained from a chemically induced feline model of monocular retinal dystrophy and split into training and testing sets.
Purpose: To investigate oculomotor behavior in response to dynamic stimuli in retinal implant recipients.
Methods: Three suprachoroidal retinal implant recipients performed a four-alternative forced-choice motion discrimination task over six sessions longitudinally. Stimuli were a single white bar ("moving bar") or a series of white bars ("moving grating") sweeping left, right, up, or down across a 42″ monitor.
Mater Sci Eng C Mater Biol Appl
January 2021
The performance of many implantable neural stimulation devices is degraded due to the loss of neurons around the electrodes by the body's natural biological responses to a foreign material. Coating of electrodes with biomolecules such as extracellular matrix proteins is one potential route to suppress the adverse responses that lead to loss of implant functionality. Concurrently, however, the electrochemical performance of the stimulating electrode must remain optimal to continue to safely provide sufficient charge for neural stimulation.
View Article and Find Full Text PDFThe spatial resolution of an implantable neural stimulator can be improved by creation of virtual channels (VCs). VCs are commonly achieved through synchronized stimulation of multiple electrodes. It remains unknown whether asynchronous stimulation is able to generate comparable VC performance in retinal stimulation, and how VC can be optimized by re-designing stimulation settings.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Present retinal neuroprostheses have limited performance capabilities due to indiscriminate activation of different neural pathways. Based on our success in differentially activating ON and OFF cells using high frequency stimuli in a healthy retina, in this study we explored whether we could achieve similar differential activation between these two cell types but in degenerate retina. We found that after blocking the synaptic network, ON retinal ganglion cells (RGCs) could be differentially activated at higher frequencies (4 - 6 kHz) and amplitudes (200 - 240 µA), and OFF RGCs at relatively lower amplitudes (80 - 160 µA) across all tested frequencies.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Cervical vagus nerve stimulation (VNS) is a neuromodulation therapy used in the treatment of several chronic disorders. In order to maximize the therapeutic effectiveness of VNS, it has become increasingly important to deliver fiber-specific neurostimulation, so that undesired effects can be minimized. Assessing the activation of different vagal fiber types through electrical stimulation is therefore essential for developing fiber-selective VNS therapies.
View Article and Find Full Text PDFObjective: Due to their increased proximity to retinal ganglion cells (RGCs), epiretinal visual prostheses present the opportunity for eliciting phosphenes with low thresholds through direct RGC activation. This study characterised the in vivo performance of a novel prototype monolithic epiretinal prosthesis, containing Nitrogen incorporated ultrananocrystalline (N-UNCD) diamond electrodes.
Approach: A prototype implant containing up to twenty-five 120 × 120 µm N-UNCD electrodes was implanted into 16 anaesthetised cats and attached to the retina either using a single tack or via magnetic coupling with a suprachoroidally placed magnet.
Objective: This study focused on characterising the response of four major functionally-different retinal ganglion cells (RGCs) to a high frequency stimulus (HFS) paradigm.
Approach: We used in vitro patch clamp experiments to assess the viability of evoking a differential response between different RGC types-OFF-Sustained, OFF-Transient, ON-Sustained and ON-Transient-under a wide range of HFS and stimulation amplitude combinations.
Main Results: Of the four types, we found that the OFF-Sustained, OFF-Transient and ON-Transient RGCs could be differentially activated at various frequency and amplitude combinations, in particular, OFF-Sustained cells can be differentially targeted between 20-100 µA at all frequencies, OFF-Transient cells between 150-240 µA at 1 kHz and ON-Transient between 180-240 µA and 4-6 kHz.
The temporal pattern of action potentials can convey rich information in a variety of sensory systems. We describe a new non-invasive technique that enables precise, reliable generation of action potential patterns in tactile peripheral afferent neurons by brief taps on the skin. Using this technique, we demonstrate sophisticated coding of temporal information in the somatosensory system, that shows that perceived vibration frequency is not encoded in peripheral afferents as was expected by either their firing rate or the underlying periodicity of the stimulus.
View Article and Find Full Text PDFObjective: With the strong drive towards miniaturization of active implantable medical devices and the need to improve the resolution of neural stimulation arrays, there is keen interest in the manufacture of small electrodes capable of safe, continuous stimulation. Traditional materials such as platinum do not possess the necessary electrochemical properties to stimulate neurons safely when electrodes are very small (i.e.
View Article and Find Full Text PDF