Publications by authors named "Mohit Kulkarni"

Correction for 'High-performance one-dimensional halide perovskite crossbar memristors and synapses for neuromorphic computing' by Sujaya Kumar Vishwanath , , 2024, , 2643-2656, https://doi.org/10.1039/D3MH02055J.

View Article and Find Full Text PDF

Despite impressive demonstrations of memristive behavior with halide perovskites, no clear pathway for material and device design exists for their applications in neuromorphic computing. Present approaches are limited to single element structures, fall behind in terms of switching reliability and scalability, and fail to map out the analog programming window of such devices. Here, we systematically design and evaluate robust pyridinium-templated one-dimensional halide perovskites as crossbar memristive materials for artificial neural networks.

View Article and Find Full Text PDF

Soft robotics focuses on mimicking natural systems to produce dexterous motion. Dielectric elastomer actuators (DEAs) are an attractive option due to their large strains, high efficiencies, lightweight design, and integrability, but require high electric fields. Conventional approaches to improve DEA performance by incorporating solid fillers in the polymer matrices can increase the dielectric constant but to the detriment of mechanical properties.

View Article and Find Full Text PDF

Sensory information processing in robot skins currently rely on a centralized approach where signal transduction (on the body) is separated from centralized computation and decision-making, requiring the transfer of large amounts of data from periphery to central processors, at the cost of wiring, latency, fault tolerance and robustness. We envision a decentralized approach where intelligence is embedded in the sensing nodes, using a unique neuromorphic methodology to extract relevant information in robotic skins. Here we specifically address pain perception and the association of nociception with tactile perception to trigger the escape reflex in a sensorized robotic arm.

View Article and Find Full Text PDF

Growing interest in soft robotics, stretchable electronics, and electronic skins has created demand for soft, compliant, and stretchable electrodes and interconnects. Here, dielectrophoresis (DEP) is used to assemble, align, and sinter eutectic gallium indium (EGaIn) microdroplets in uncured poly(dimethylsiloxane) (PDMS) to form electrically conducting microwires. There are several noteworthy aspects of this approach.

View Article and Find Full Text PDF

Despite extensive research, large-scale realization of metal-oxide electronics is still impeded by high-temperature fabrication, incompatible with flexible substrates. Ideally, an athermal treatment modifying the electronic structure of amorphous metal oxide semiconductors (AMOS) to generate sufficient carrier concentration would help mitigate such high-temperature requirements, enabling realization of high-performance electronics on flexible substrates. Here, a novel field-driven athermal activation of AMOS channels is demonstrated via an electrolyte-gating approach.

View Article and Find Full Text PDF

Inspired by neural computing, the pursuit of ultralow power neuromorphic architectures with highly distributed memory and parallel processing capability has recently gained more traction. However, emulation of biological signal processing via artificial neuromorphic architectures does not exploit the immense interplay between local activities and global neuromodulations observed in biological neural networks and hence are unable to mimic complex biologically plausible adaptive functions like heterosynaptic plasticity and homeostasis. Here, we demonstrate emulation of complex neuronal behaviors like heterosynaptic plasticity, homeostasis, association, correlation, and coincidence in a single neuristor via a dual-gated architecture.

View Article and Find Full Text PDF

Emulation of brain-like signal processing is the foundation for development of efficient learning circuitry, but few devices offer the tunable conductance range necessary for mimicking spatiotemporal plasticity in biological synapses. An ionic semiconductor which couples electronic transitions with drift-diffusive ionic kinetics would enable energy-efficient analog-like switching of metastable conductance states. Here, ionic-electronic coupling in halide perovskite semiconductors is utilized to create memristive synapses with a dynamic continuous transition of conductance states.

View Article and Find Full Text PDF

Thin-film transistors (TFTs) with high electrical performances (mobility > 10 cm/V s, V < 1 V, SS < 1 V/decade, on/off ratio ≈ 10) obtained from the silicon- and oxide-based single-crystalline semiconductor materials require high processing temperature and hence are not suitable for flexible electronics. Amorphous oxide-based transparent electronic devices are attractive to meet emerging technological demands where crystalline oxide-/silicon-based architectures cannot provide a solution. Here, we tackle this problem by using a novel amorphous oxide semiconducting material-namely, indium tungsten oxide (IWO)-as the active channel in flexible TFTs (FTFTs).

View Article and Find Full Text PDF

Emulation of brain-like signal processing with thin-film devices can lay the foundation for building artificially intelligent learning circuitry in future. Encompassing higher functionalities into single artificial neural elements will allow the development of robust neuromorphic circuitry emulating biological adaptation mechanisms with drastically lesser neural elements, mitigating strict process challenges and high circuit density requirements necessary to match the computational complexity of the human brain. Here, 2D transition metal di-chalcogenide (MoS ) neuristors are designed to mimic intracellular ion endocytosis-exocytosis dynamics/neurotransmitter-release in chemical synapses using three approaches: (i) electronic-mode: a defect modulation approach where the traps at the semiconductor-dielectric interface are perturbed; (ii) ionotronic-mode: where electronic responses are modulated via ionic gating; and (iii) photoactive-mode: harnessing persistent photoconductivity or trap-assisted slow recombination mechanisms.

View Article and Find Full Text PDF

Challenges associated with the mechanical fracture of electrical conductors have hindered the realization of truly flexible high performance wearable electronics. Here, transparent healable electrodes have been developed and examined to alleviate these problems. The composite electrode features a layer of an interconnecting AgNW network on a polyurethane film modified with Diels-Alder adducts (PU-DA).

View Article and Find Full Text PDF

Emulation of biological synapses is necessary for future brain-inspired neuromorphic computational systems that could look beyond the standard von Neuman architecture. Here, artificial synapses based on ionic-electronic hybrid oxide-based transistors on rigid and flexible substrates are demonstrated. The flexible transistors reported here depict a high field-effect mobility of ≈9 cm V s with good mechanical performance.

View Article and Find Full Text PDF

Electronic skins need to be versatile and able to detect multiple inputs beyond simple pressure and touch while having attributes of transparency and facile manufacturability. Herein, we demonstrate a versatile nanostructured transparent sensor capable of detecting wide range of pressures and proximity as well as novel nonoptical detection of printed patterns. The architecture and fabrication processes are straightforward and show robustness to repeated cycling and testing.

View Article and Find Full Text PDF