The synthetic allosteric effector of hemoglobin, TD-7 has been investigated as a potential therapeutic agent for the treatment of sickle cell disease. The pharmacologic activity of TD-7 is due to formation of a Schiff-base interaction between its aldehyde group and the two N-terminal αVal1 amines of hemoglobin, effectively inhibiting sickling of red blood cells. However, TD-7 faces a challenge in terms of poor oral bioavailability due to rapid in-vivo oxidative metabolism of its aldehyde functional group.
View Article and Find Full Text PDFSickle cell disease (SCD) is the most common genetic disorder, affecting millions of people worldwide. Aromatic aldehydes, which increase the oxygen affinity of human hemoglobin to prevent polymerization of sickle hemoglobin and inhibit red blood cell (RBC) sickling, have been the subject of keen interest for the development of effective treatment against SCD. However, the aldehyde functional group metabolic instability has severly hampered their development, except for voxelotor, which was approved in 2019 for SCD treatment.
View Article and Find Full Text PDFPyridoxine 4-dehydrogenase (PdxI), a NADPH-dependent pyridoxal reductase, is one of the key players in the Escherichia coli pyridoxal 5'-phosphate (PLP) salvage pathway. This enzyme, which catalyses the reduction of pyridoxal into pyridoxine, causes pyridoxal to be converted into PLP via the formation of pyridoxine and pyridoxine phosphate. The structural and functional properties of PdxI were hitherto unknown, preventing a rational explanation of how and why this longer, detoured pathway occurs, given that, in E.
View Article and Find Full Text PDFPyridoxal 5'-phosphate (PLP), the active form of vitamin B6, serves as a cofactor for scores of B6-dependent (PLP-dependent) enzymes involved in many cellular processes. One such B6 enzyme is dopa decarboxylase (DDC), which is required for the biosynthesis of key neurotransmitters, e.g.
View Article and Find Full Text PDFAromatic aldehydes act as allosteric effectors of hemoglobin (AEH), forming Schiff-base adducts with the protein to increase its oxygen (O) affinity; a desirable property in sickle cell disease (SCD) treatment, as the high-O affinity hemoglobin (Hb) does not polymerize and subsequently prevents erythrocytes sickling. This study reports the development, validation, and application of a weak cation-exchange HPLC assay - quantifying the appearance of Hb-AEH adduct - as a "universal" method, allowing for the prioritization of AEH candidates through an understanding of their Hb binding affinity and kinetics. Concentration- and time-dependent Hb binding profiles of ten AEHs were determined with HPLC, followed by the appropriate non-linear modeling to characterize their steady-state binding affinity (K), and binding kinetics second-order association (k) and first-order dissociation (k) rate constants.
View Article and Find Full Text PDFSickle cell disease (SCD) is caused by a single-point mutation, and the ensuing deoxygenation-induced polymerization of sickle hemoglobin (HbS), and reduction in bioavailability of vascular nitric oxide (NO), contribute to the pathogenesis of the disease. In a proof-of-concept study, we successfully incorporated nitrate ester groups onto two previously studied potent antisickling aromatic aldehydes, TD7 and VZHE039, to form TD7-NO and VZHE039-NO hybrids, respectively. These compounds are stable in buffer but demonstrated the expected release of NO in whole blood in vitro and in mice.
View Article and Find Full Text PDF5-hydroxyfurfural (5HMF), an allosteric effector of hemoglobin (Hb) with an ability to increase Hb affinity for oxygen has been studied extensively for its antisickling effect in vitro and in vivo, and in humans for the treatment of sickle cell disease (SCD). One of the downstream pathophysiologies of SCD is nitric oxide (NO) deficiency, therefore increasing NO (bio)availability is known to mitigate the severity of SCD symptoms. We report the synthesis of an NO-releasing prodrug of 5HMF (5HMF-NO), which in vivo, is expected to be bio-transformed into 5HMF and NO, with concomitant therapeutic activities.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
April 2022
Bisphosphoglycerate mutase (BPGM) is an erythrocyte-specific multifunctional enzyme that is responsible for the regulation of 2,3-bisphosphoglycerate (2,3-BPG) in red blood cells through its synthase and phosphatase activities; the latter enzymatic function is stimulated by the endogenous activator 2-phosphoglycolate (2-PG). 2,3-BPG is a natural allosteric effector of hemoglobin (Hb) that is responsible for decreasing the affinity of Hb for oxygen to facilitate tissue oxygenation. Here, crystal structures of BPGM with 2-PG in the presence and absence of 3-phosphoglycerate are reported at 2.
View Article and Find Full Text PDFPyridoxal 5'-phosphate (PLP), the active cofactor form of vitamin B6 is required by over 160 PLP-dependent (vitamin B6) enzymes serving diverse biological roles, such as carbohydrates, amino acids, hemes, and neurotransmitters metabolism. Three key enzymes, pyridoxal kinase (PL kinase), pyridoxine 5'-phosphate oxidase (PNPO), and phosphatases metabolize and supply PLP to PLP-dependent enzymes through the salvage pathway. In born errors in the salvage enzymes are known to cause inadequate levels of PLP in the cell, particularly in neuronal cells.
View Article and Find Full Text PDFSickle cell disease (SCD) results from a hemoglobin (Hb) mutation βGlu6 → βVal6 that changes normal Hb (HbA) into sickle Hb (HbS). Under hypoxia, HbS polymerizes into rigid fibers, causing red blood cells (RBCs) to sickle; leading to numerous adverse pathological effects. The RBC sickling is made worse by the low oxygen (O) affinity of HbS, due to elevated intra-RBC concentrations of the natural Hb effector, 2,3-diphosphoglycerate.
View Article and Find Full Text PDFAromatic aldehydes elicit their antisickling effects primarily by increasing the affinity of hemoglobin (Hb) for oxygen (O). However, challenges related to weak potency and poor pharmacokinetic properties have hampered their development to treat sickle cell disease (SCD). Herein, we report our efforts to enhance the pharmacological profile of our previously reported compounds.
View Article and Find Full Text PDFAromatic aldehydes that bind to sickle hemoglobin (HbS) to increase the protein oxygen affinity and/or directly inhibit HbS polymer formation to prevent the pathological hypoxia-induced HbS polymerization and the subsequent erythrocyte sickling have for several years been studied for the treatment of sickle cell disease (SCD). With the exception of Voxelotor, which was recently approved by the U.S.
View Article and Find Full Text PDFThis chapter reviews how allosteric (heterotrophic) effectors and natural mutations impact hemoglobin (Hb) primary physiological function of oxygen binding and transport. First, an introduction about the structure of Hb is provided, including the ensemble of tense and relaxed Hb states and the dynamic equilibrium of Hb multistate. This is followed by a brief review of Hb variants with altered Hb structure and oxygen binding properties.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
October 2018
Increasing the affinity of hemoglobin for oxygen represents a feasible and promising therapeutic approach for sickle cell disease by mitigating the primary pathophysiological event, i.e. the hypoxia-induced polymerization of sickle hemoglobin (Hb S) and the concomitant erythrocyte sickling.
View Article and Find Full Text PDFHypoxia-induced polymerization of sickle hemoglobin (Hb S) is the principal phenomenon that underlays the pathophysiology and morbidity associated with sickle cell disease (SCD). Opportunely, as an allosteric protein, hemoglobin (Hb) serves as a convenient and potentially critical druggable target. Consequently, molecules that prevent Hb S polymerization (Hb modifiers), and the associated erythrocyte sickling have been investigated-and retain significant interest-as a viable therapeutic strategy for SCD.
View Article and Find Full Text PDFCandidate drugs to counter intracellular polymerization of deoxygenated sickle hemoglobin (Hb S) continue to represent a promising approach to mitigating the primary cause of the pathophysiology associated with sickle cell disease (SCD). One such compound is the naturally occurring antisickling agent, 5-hydroxymethyl-2-furfural (5-HMF), which has been studied in the clinic for the treatment of SCD. As part of our efforts to develop novel efficacious drugs with improved pharmacologic properties, we structurally modified 5-HMF into 12 ether and ester derivatives.
View Article and Find Full Text PDFHemoglobin (Hb) modifiers that stereospecifically inhibit sickle hemoglobin polymer formation and/or allosterically increase Hb affinity for oxygen have been shown to prevent the primary pathophysiology of sickle cell disease (SCD), specifically, Hb polymerization and red blood cell sickling. Several such compounds are currently being clinically studied for the treatment of SCD. Based on the previously reported non-covalent Hb binding characteristics of substituted aryloxyalkanoic acids that exhibited antisickling properties, we designed, synthesized and evaluated 18 new compounds (KAUS II series) for enhanced antisickling activities.
View Article and Find Full Text PDFPyridoxal 5'-phosphate (PLP) is a cofactor for many vitamin B6-requiring enzymes that are important for the synthesis of neurotransmitters. Pyridoxine 5'-phosphate oxidase (PNPO) is one of two enzymes that produce PLP. Some 16 known mutations in human PNPO (hPNPO), including R95C and R229W, lead to deficiency of PLP in the cell and have been shown to cause neonatal epileptic encephalopathy (NEE).
View Article and Find Full Text PDFThe fundamental pathophysiology of sickle cell disease is predicated by the polymerization of deoxygenated (T-state) sickle hemoglobin (Hb S) into fibers that distort red blood cells into the characteristic sickle shape. The crystal structure of deoxygenated Hb S (DeoxyHb S) and other studies suggest that the polymer is initiated by a primary interaction between the mutation βVal6 from one Hb S molecule, and a hydrophobic acceptor pocket formed by the residues βAla70, βPhe85 and βLeu88 of an adjacent located Hb S molecule. On the contrary, oxygenated or liganded Hb S does not polymerize or incorporate in the polymer.
View Article and Find Full Text PDFWe have developed novel nitric oxide (NO)-releasing prodrugs of efaproxiral (RSR13) for their potential therapeutic applications in a variety of diseases with underlying ischemia. RSR13 is an allosteric effector of hemoglobin (Hb) that decreases the protein's affinity for oxygen, thereby increasing tissue oxygenation. NO, because of its vasodilatory property, in the form of ester prodrugs has been found to be useful in managing several cardiovascular diseases by increasing blood flow and oxygenation in ischemic tissues.
View Article and Find Full Text PDFL-Threonine aldolases (TAs), a family of enzymes belonging to the fold-type I pyridoxal 5'-phosphate (PLP) dependent enzymes, play a role in catalyzing the reversible cleavage of l-3-hydroxy-α-amino acids to glycine and the corresponding aldehydes. Threonine aldolases have great biotechnological potential for the syntheses of pharmaceutically relevant drug molecules because of their stereospecificity. The pH-dependency of their catalytic activity, affecting reaction intermediates, led us to study the effect of low-pH on Escherichia coli TA (eTA) structure.
View Article and Find Full Text PDFL-threonine aldolases (L-TAs) represent a family of homologous pyridoxal 5'-phosphate-dependent enzymes found in bacteria and fungi, and catalyse the reversible cleavage of several L-3-hydroxy-α-amino acids. L-TAs have great biotechnological potential, as they catalyse the formation of carbon-carbon bonds, and therefore may be exploited for the bioorganic synthesis of L-3-hydroxyamino acids that are biologically active or constitute building blocks for pharmaceutical molecules. Many L-TAs, showing different stereospecificity towards the Cβ configuration, have been isolated.
View Article and Find Full Text PDFSeveral drugs and natural compounds are known to be highly neurotoxic, triggering epileptic convulsions or seizures, and causing headaches, agitations, as well as other neuronal symptoms. The neurotoxic effects of some of these compounds, including theophylline and ginkgotoxin, have been traced to their inhibitory activity against human pyridoxal kinase (hPL kinase), resulting in deficiency of the active cofactor form of vitamin B₆, pyridoxal 5'-phosphate (PLP). Pyridoxal (PL), an inactive form of vitamin B₆ is converted to PLP by PL kinase.
View Article and Find Full Text PDF