The remarkable recent advances in protein structure prediction have enabled computational modeling of protein structures with considerably higher accuracy than ever before. While state-of-the-art structure prediction methods provide self-assessment confidence scores of their own predictions, an independent and open-access system for protein scoring is still needed that can be applied to a broad range of predictive modeling scenarios. Here, we present iQDeep, an integrated and highly customizable web server for protein scoring, freely available at http://fusion.
View Article and Find Full Text PDFMotivation: Accurate modeling of protein-protein interaction interface is essential for high-quality protein complex structure prediction. Existing approaches for estimating the quality of a predicted protein complex structural model utilize only the physicochemical properties or energetic contributions of the interacting atoms, ignoring evolutionarily information or inter-atomic multimeric geometries, including interaction distance and orientations.
Results: Here, we present PIQLE, a deep graph learning method for protein-protein interface quality estimation.
Accurate modeling of protein-protein interaction interface is essential for high-quality protein complex structure prediction. Existing approaches for estimating the quality of a predicted protein complex structural model utilize only the physicochemical properties or energetic contributions of the interacting atoms, ignoring evolutionarily information or inter-atomic multimeric geometries, including interaction distance and orientations. Here we present PIQLE, a deep graph learning method for protein-protein interface quality estimation.
View Article and Find Full Text PDF