Introduction: The efficiency of zinc oxide (ZnO) nanoparticles for environmental decontamination is limited by their reliance on ultraviolet (UV) light and rapid charge carrier recombination. Carbon doping has been proposed to address these challenges by potentially enhancing visible light absorption and charge separation.
Objectives: This study aims to introduce a novel, single-step synthesis method for carbon-doped ZnO (C-Z) nanoparticles, leveraging the decomposition of zinc nitrate hexahydrate and furfural under a nitrogen atmosphere to improve photocatalytic activity under visible light.
Global healthcare based on the Internet of Things system is rapidly transforming to measure precise physiological body parameters without visiting hospitals at remote patients and associated symptoms monitoring. 2D materials and the prevailing mood of current ever-expanding MXene-based sensing devices motivate to introduce first the novel iridium (Ir) precious metal incorporated vanadium (V)-MXene via industrially favored emerging atomic layer deposition (ALD) techniques. The current work contributes a precise control and delicate balance of Ir single atomic forms or clusters on the V-MXene to constitute a unique precious metal-MXene embedded heterostructure (Ir-ALD@V-MXene) in practical real-time sensing healthcare applications to thermography with human-machine interface for the first time.
View Article and Find Full Text PDFIn the current study, the association and phase separation of cationic tetradecyltrimethylammonium bromide (TTAB) and nonionic Triton X-100 (TX-100) surfactants with promethazine hydrochloride (PMH) were investigated in aqueous ammonium-based solutions. The micellization nature of the TTAB and PMH drug mixture was examined by evaluating critical micelle concentration (CMC) and counterion binding extent () at different salt contents and temperatures (298.15-323.
View Article and Find Full Text PDFMetal telluride (MTe)-based nanomaterials have emerged as a potential alternative for efficient, highly conductive, robust, and durable electrodes in energy storage/conversion applications. Significant progress in the material development of MTe-based electrodes is well-sought, from the synthesis of its nanostructures, integration of MTes with supporting materials, synthesis of their hybrid morphologies, and their implications in energy storage/conversion systems. Herein, an extensive exploration of the recent advancements and progress in MTes-based nanomaterials is reviewed.
View Article and Find Full Text PDFPerovskite photovoltaics have an immense contribution toward the all-round development of the solar cell. Apart from the flexibility, stability, and high efficiency, more stress has been given to using lead-free as well as eco-friendly, inexpensive materials in the fabrication of PSC devices. The utilization of non-volatile material, such as cesium tin iodide (CsSnI), can be proposed for designing the PSC device, which not only makes it eco-friendly but also offers better optoelectronic characteristics due to its smaller bandgap of 1.
View Article and Find Full Text PDFWith increased efficiency, simplicity in manufacturing, adaptability, and flexibility, solar cells constructed from organic metal halide perovskite (PVK) have recently attained great eminence. Lead, a poisonous substance, present in a conventional PVK impacts the environment and prevents commercialization. To deal with this issue, a number of toxicity-free PVK-constructed solar cells have been suggested.
View Article and Find Full Text PDFLithium-ion batteries (LIBs) are accounted as promising power tools, applicable in a wide range of energy-based equipment, from portable devices to electric vehicles. Meanwhile, approaching a cost-effective, environmentally friendly, and safe LIB array has remained sluggish yet. In this regard, cellulose, as a nontoxic natural renewable polymer, has provided a stable and cohesive electrode structure with excellent mechanical stability and reduced electrode cracking or delamination during cycling.
View Article and Find Full Text PDFAtomic layer deposition (ALD) has become the most widely used thin-film deposition technique in various fields due to its unique advantages, such as self-terminating growth, precise thickness control, and excellent deposition quality. In the energy storage domain, ALD has shown great potential for supercapacitors (SCs) by enabling the construction and surface engineering of novel electrode materials. This review aims to present a comprehensive outlook on the development, achievements, and design of advanced electrodes involving the application of ALD for realizing high-performance SCs to date, as organized in several sections of this paper.
View Article and Find Full Text PDFThis research investigates the influence of halide-based methylammonium-based perovskites as the active absorber layer (PAL) in perovskite solar cells (PSCs). Using SCAPS-1D simulation software, the study optimizes PSC performance by analyzing PAL thickness, temperature, and defect density impact on output parameters. PAL thickness analysis reveals that increasing thickness enhances for MAPbI and MAPbIBr, while that of MAPbBr remains steady.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2024
Localized surface plasmonic resonance (LSPR) biosensing using optical fibers has gained popularity due to its label-free approach and high sensitivity to changes in the nanoparticle surface's local index of refraction. However, improving sensitivity remains a challenge. In this study, a two-step approach was employed to fabricate a composite structure using gold nanoparticles and monolayer graphene (Gr-AuNPs).
View Article and Find Full Text PDFThe modern eco-friendly materials used in research and innovation today consist of nanocomposites and bio-nanocomposite polymers. Their unique composite properties make them suitable for various industrial, medicinal, and energy applications. Bio-nanocomposite polymers are made of biopolymer matrices that have nanofillers dispersed throughout them.
View Article and Find Full Text PDFElectrolytes are one of the most influential aspects determining the efficiency of electrochemical supercapacitors. Therefore, in this paper, we investigate the effect of introducing co-solvents of ester into ethylene carbonate (EC). The use of ester co-solvents in ethylene carbonate (EC) as an electrolyte for supercapacitors improves conductivity, electrochemical properties, and stability, allowing greater energy storage capacity and increased device durability.
View Article and Find Full Text PDFPerovskite materials have gained considerable attention in recent years for their potential to improve the efficiency of solar cells. This study focuses on optimizing the efficiency of perovskite solar cells (PSCs) by investigating the thickness of the methylammonium-free absorber layer in the device structure. In the study we used a SCAPS-1D simulator to analyze the performance of MASnI and CsPbI-based PSCs under AM1.
View Article and Find Full Text PDFThis study suggests a Ru/ZnO bilayer grown using area-selective atomic layer deposition (AS-ALD) as a multifunctional layer for advanced Cu metallization. As a diffusion barrier and glue layer, ZnO is selectively grown on SiO , excluding Cu, where Ru, as a liner and seed layer, is grown on both surfaces. Dodecanethiol (DDT) is used as an inhibitor for the AS-ALD of ZnO using diethylzinc and H O at 120 °C.
View Article and Find Full Text PDFDespite the fast-developing momentum of perovskite solar cells (PSCs) toward flexible roll-to-roll solar energy harvesting panels, their long-term stability remains to be the challenging obstacle in terms of moisture, light sensitivity, and thermal stress. Compositional engineering including less usage of volatile methylammonium bromide (MABr) and incorporating more formamidinium iodide (FAI) promises more phase stability. In this work, an embedded carbon cloth in carbon paste is utilized as the back contact in PSCs (having optimized perovskite composition), resulting in a high power conversion efficiency (PCE) of 15.
View Article and Find Full Text PDFGraphitic carbon nitride (g-C N ) has gained tremendous interest in the sector of power transformation and retention, because of its distinctive stacked composition, adjustable electronic structure, metal-free feature, superior thermodynamic durability, and simple availability. Furthermore, the restricted illumination and extensive recombination of photoexcitation electrons have inhibited the photocatalytic performance of pure g-C N . The dimensions of g-C N may impact the field of electronics confinement; as a consequence, g-C N with varying dimensions shows unique features, making it appropriate for a number of fascinating uses.
View Article and Find Full Text PDFIn searching for unique and unexplored 2D materials, the authors try to investigate for the very first time the use of delaminated V-MXene coupled with precious metal ruthenium (Ru) through atomic layer deposition (ALD) for various contact and noncontact mode of real-time temperature sensing applications at the human-machine interface. The novel delaminated V-MXene (DM-V CT ) engineered ruthenium-ALD (Ru-ALD) temperature sensor demonstrates a competitive sensing performance of 1.11% °C as of only V-MXene of 0.
View Article and Find Full Text PDFResearchers have been enthusiastic about developing high-performance electrode materials based on metal chalcogenides for energy storage applications. Herein, we developed cupric ion-containing zinc sulfide (ZnS:Cu) nanoplates by using a solvothermal approach. The as-synthesized ZnS:Cu nanoplates electrode was characterized and analyzed by using XRD, SEM, TEM, EDS, and XPS.
View Article and Find Full Text PDFIntegrating semiconducting functional materials is a way to enlarge the photoexcitation, energy range, and charge separation, greatly elongating the photocatalytic efficiency to enhance the chemical and physical properties of the materials. This work depicts and investigates the impact of cuprous oxide (CuO) and tin dioxide (SnO)-based catalysts with various CuO concentrations on photocatalytic and supercapacitor applications. Moreover, three distinct composites were made with varied ratios of CuO (5, 10, and 15% wt.
View Article and Find Full Text PDFManganese (Mn)-based oxides are considered suitable positive electrode materials for supercapacitors (SCs). However, their cycle stability and specific capacitance are significantly hindered by key restrictions such as structural instability and low conductivity. Herein, we demonstrated a novel nanorod (NR)-shaped heterostructured manganese dioxide/manganese selenide membrane (MnO/MnSe) on carbon cloth (CC) (denoted as MnO/MnSe-NR@CC) with a high aspect ratio by a straightforward and facile hydrothermal process.
View Article and Find Full Text PDFZinc (Zn) ion supercapacitors (ZISCs) have attracted considerable attention as a viable energy storage technology because they are cost-effective, safe, and environmentally friendly. However, cathode materials with suitable properties are rare and need to be explored. In this regard, metal carbides (MXenes) are a good choice for capacitive energy storage, but they exhibit low capacitance.
View Article and Find Full Text PDFMany modern user interfaces are based on touch, and such sensors are widely used in displays, Internet of Things (IoT) projects, and robotics. From lamps to touchscreens of smartphones, these user interfaces can be found in an array of applications. However, traditional touch sensors are bulky, complicated, inflexible, and difficult-to-wear devices made of stiff materials.
View Article and Find Full Text PDFSupercapacitors (SCs) have attracted attention as an important energy source for various applications owing to their high power outputs and outstanding energy densities. The electrochemical performance of an SC device is predominantly determined by electrode materials, and thus, the selection and synthesis of the materials are crucial. Metal oxides (MOs) and their composites are the most widely used pseudocapacitive SC electrode materials.
View Article and Find Full Text PDFWe present an atomic layer deposition (ALD) process for the synthesis of tin nitride (SnN) thin films using tetrakis(dimethylamino) tin (TDMASn, Sn(NMe)) and ammonia (NH) as the precursors at low deposition temperatures (70-200 °C). This newly developed ALD scheme exhibits ideal ALD features such as self-limited film growth at 150 °C. The growth per cycle (GPC) was found to be ∼0.
View Article and Find Full Text PDF