A deficiency in the photoelectrical dynamics at the interface due to the surface traps of the TiO electron transport layer (ETL) has been the critical factor for the inferiority of the power conversion efficiency (PCE) in the perovskite solar cells. Despite its excellent energy level alignment with most perovskite materials, its large density of surface defect as a result of sub lattice vacancies has been the critical hurdle for an efficient photovoltaic process in the device. Here, we report that atoms thick 2D TiS layer grown on the surface of a (001) faceted and single-crystalline TiO nanograss (NG) ETL have effectively passivated the defects, boosting the charge extractability, carrier mobility, external quantum efficiency, and the device stability.
View Article and Find Full Text PDFThis paper reports the synthesis of two-dimensional, hierarchical, porous, and (001)-faceted metal (Ag, Zn, and Al)-doped TiO nanostructures (TNSs) and the study of their photocatalytic activity. Two-dimensional metal-doped TNSs were synthesized using the hydrolysis of ammonium hexafluorotitanate in the presence of hexamethylenetetramine and metal precursors. Typical morphology of metal-doped TNSs is a hierarchical nanosheet that is composed of randomly stacked nanocubes (dimensions of up to 5 μm and 200 nm in edge length and thickness, respectively) and has dominant (001) facets exposed.
View Article and Find Full Text PDFA simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs) on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min) and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively.
View Article and Find Full Text PDF