Publications by authors named "Mohd Saberi Mohamad"

Article Synopsis
  • Pompe disease is a rare genetic disorder that causes glycogen buildup due to enzyme deficiency, primarily affecting the heart and muscles, with urgent treatment needed for infantile-onset forms to prevent mortality.
  • The study aims to improve diagnosis of infantile-onset Pompe disease in the UAE by using electronic health records (EHRs) to create a rule-based screening approach that enables quick and precise identification of at-risk patients.
  • The screening evaluated over 93,000 subjects, resulting in five identified true positives and one false negative, while integrating expert rules with a dashboard for better data visualization and screening efficiency, with a recommendation for future research to apply machine learning for enhanced detection.
View Article and Find Full Text PDF

Single nucleotide variants (SNVs) can exert substantial and extremely variable impacts on various cellular functions, making accurate predictions of their consequences challenging, albeit crucial especially in clinical settings such as in oncology. Laboratory-based experimental methods for assessing these effects are time-consuming and often impractical, highlighting the importance of in-silico tools for variant impact prediction. However, the performance metrics of currently available tools on breast cancer missense variants from benchmarking databases have not been thoroughly investigated, creating a knowledge gap in the accurate prediction of pathogenicity.

View Article and Find Full Text PDF

Rare diseases (RDs) are rare complex genetic diseases affecting a conservative estimate of 300 million people worldwide. Recent Next-Generation Sequencing (NGS) studies are unraveling the underlying genetic heterogeneity of this group of diseases. NGS-based methods used in RDs studies have improved the diagnosis and management of RDs.

View Article and Find Full Text PDF

Studies continue to uncover contributing risk factors for breast cancer (BC) development including genetic variants. Advances in machine learning and big data generated from genetic sequencing can now be used for predicting BC pathogenicity. However, it is unclear which tool developed for pathogenicity prediction is most suited for predicting the impact and pathogenicity of variant effects.

View Article and Find Full Text PDF

The emergence of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) posed a serious worldwide threat and emphasized the urgency to find efficient solutions to combat the spread of the virus. Drug repurposing has attracted more attention than traditional approaches due to its potential for a time- and cost-effective discovery of new applications for the existing FDA-approved drugs. Given the reported success of machine learning (ML) in virtual drug screening, it is warranted as a promising approach to identify potential SARS-CoV-2 inhibitors.

View Article and Find Full Text PDF

Analyzing metabolic pathways in systems biology requires accurate kinetic parameters that represent the simulated processes. Simulation of the fermentation pathway in the kinetic model help saves much time in the optimization process. Fitting the simulated model into the experimental data is categorized under the parameter estimation problem.

View Article and Find Full Text PDF

As the most popular technologies of the 21st century, artificial intelligence (AI) and the internet of things (IoT) are the most effective paradigms that have played a vital role in transforming the agricultural industry during the pandemic. The convergence of AI and IoT has sparked a recent wave of interest in artificial intelligence of things (AIoT). An IoT system provides data flow to AI techniques for data integration and interpretation as well as for the performance of automatic image analysis and data prediction.

View Article and Find Full Text PDF

Metabolic engineering has expanded in importance and employment in recent years and is now extensively applied particularly in the production of biomass from microbes. Metabolic network models have been employed extravagantly in computational processes developed to enhance metabolic production and suggest changes in organisms. The crucial issue has been the unrealistic flux distribution presented in prior work on rational modelling framework adopting Optknock and OptGene.

View Article and Find Full Text PDF

Artificial intelligence in healthcare can potentially identify the probability of contracting a particular disease more accurately. There are five common molecular subtypes of breast cancer: luminal A, luminal B, basal, ERBB2, and normal-like. Previous investigations showed that pathway-based microarray analysis could help in the identification of prognostic markers from gene expressions.

View Article and Find Full Text PDF

Objectives: The relationships of Paired Like Homeodomain 2 (PITX2), Ninjurin 2 (NINJ2), TWIST-Related Protein 1 (TWIST1), Ras Interacting Protein 1 (Rasip1), Solute Carrier Family 17 Member 3 (SLC17A3), Methylmalonyl Co-A Mutase (MUT) and Fer3 Like BHLH Transcription Factor (FERD3L) polymorphisms and gene expression with ischemic stroke have yet to be determined in Malaysia. Hence, this study aimed to explore the associations of single nucleotide polymorphisms (SNPs) and gene expression with ischemic stroke risk among population who resided at the Northern region of Malaysia.

Materials And Methods: Study subjects including 216 ischemic stroke patients and 203 healthy controls were recruited upon obtaining ethical clearance.

View Article and Find Full Text PDF

Microorganisms commonly produce many high-demand industrial products like fuels, food, vitamins, and other chemicals. Microbial strains are the strains of microorganisms, which can be optimized to improve their technological properties through metabolic engineering. Metabolic engineering is the process of overcoming cellular regulation in order to achieve a desired product or to generate a new product that the host cells do not usually need to produce.

View Article and Find Full Text PDF

This paper presents an efficient cyberphysical platform for the smart management of smart territories. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases.

View Article and Find Full Text PDF

The metabolic network is the reconstruction of the metabolic pathway of an organism that is used to represent the interaction between enzymes and metabolites in genome level. Meanwhile, metabolic engineering is a process that modifies the metabolic network of a cell to increase the production of metabolites. However, the metabolic networks are too complex that cause problem in identifying near-optimal knockout genes/reactions for maximizing the metabolite's production.

View Article and Find Full Text PDF

Numerous cancer studies have combined different datasets for the prognosis of patients. This study incorporated four networks for significant directed random walk (sDRW) to predict cancerous genes and risk pathways. The study investigated the feasibility of cancer prediction via different networks.

View Article and Find Full Text PDF

Metabolic engineering is defined as improving the cellular activities of an organism by manipulating the metabolic, signal or regulatory network. In silico reaction knockout simulation is one of the techniques applied to analyse the effects of genetic perturbations on metabolite production. Many methods consider growth coupling as the objective function, whereby it searches for mutants that maximise the growth and production rate.

View Article and Find Full Text PDF

In gene expression studies, missing values are a common problem with important consequences for the interpretation of the final data (Satija et al., Nat Biotechnol 33(5):495, 2015). Numerous bioinformatics examination tools are used for cancer prediction, including the data set matrix (Bailey et al.

View Article and Find Full Text PDF

In recent years, metabolic engineering has gained central attention in numerous fields of science because of its capability to manipulate metabolic pathways in enhancing the expression of target phenotypes. Due to this, many computational approaches that perform genetic manipulation have been developed in the computational biology field. In metabolic engineering, conventional methods have been utilized to upgrade the generation of lactate and succinate in E.

View Article and Find Full Text PDF

Metabolic engineering involves the modification and alteration of metabolic pathways to improve the production of desired substance. The modification can be made using in silico gene knockout simulation that is able to predict and analyse the disrupted genes which may enhance the metabolites production. Global optimization algorithms have been widely used for identifying gene knockout strategies.

View Article and Find Full Text PDF

Microarray technology has become one of the elementary tools for researchers to study the genome of organisms. As the complexity and heterogeneity of cancer is being increasingly appreciated through genomic analysis, cancerous classification is an emerging important trend. Significant directed random walk is proposed as one of the cancerous classification approach which have higher sensitivity of risk gene prediction and higher accuracy of cancer classification.

View Article and Find Full Text PDF

Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model.

View Article and Find Full Text PDF

Flexible proteins are proteins that have conformational changes in their structures. Protein flexibility analysis is critical for classifying and understanding protein functionality. For that analysis, the hinge areas where proteins show flexibility must be detected.

View Article and Find Full Text PDF

Protein structure alignment and comparisons that are based on an alphabetical demonstration of protein structure are more simple to run with faster evaluation processes; thus, their accuracy is not as reliable as three-dimension (3D)-based tools. As a 1D method candidate, TS-AMIR used the alphabetic demonstration of secondary-structure elements (SSE) of proteins and compared the assigned letters to each SSE using the [Formula: see text]-gram method. Although the results were comparable to those obtained via geometrical methods, the SSE length and accuracy of adjacency between SSEs were not considered in the comparison process.

View Article and Find Full Text PDF

Incorporation of pathway knowledge into microarray analysis has brought better biological interpretation of the analysis outcome. However, most pathway data are manually curated without specific biological context. Non-informative genes could be included when the pathway data is used for analysis of context specific data like cancer microarray data.

View Article and Find Full Text PDF

Background: Predicting the effects of genetic modification is difficult due to the complexity of metabolic net- works. Various gene knockout strategies have been utilised to deactivate specific genes in order to determine the effects of these genes on the function of microbes. Deactivation of genes can lead to deletion of certain proteins and functions.

View Article and Find Full Text PDF

Neuroimaging is a new technique used to create images of the structure and function of the nervous system in the human brain. Currently, it is crucial in scientific fields. Neuroimaging data are becoming of more interest among the circle of neuroimaging experts.

View Article and Find Full Text PDF