Methicillin-resistant Staphylococcus aureus (MRSA) continues to pose significant challenges in healthcare settings due to its multi-drug resistance (MDR) and virulence. This retrospective study examines the molecular and resistance profiles of MRSA isolates from a tertiary care hospital in Saudi Arabia, providing valuable insights into regional epidemiology. A total of 190 MRSA strains were analysed to assess antimicrobial susceptibility, genetic diversity, and virulence factors.
View Article and Find Full Text PDFAims: This review examines the challenges posed by Diabetic Foot Infections (DFIs), focusing on the impact of neuropathy, peripheral arterial disease, immunopathy, and the polymicrobial nature of these infections. The aim is to explore the factors contributing to antimicrobial resistance and assess the potential of novel antimicrobial treatments and drug delivery systems in improving patient outcomes.
Method: A comprehensive analysis of existing literature on DFIs was conducted, highlighting the multifactorial pathogenesis and polymicrobial composition of these infections.
The effect of open-pit bauxite mining on beach sediment contamination in the urban coastal environment of Kuantan City, Malaysia, was investigated. The contents of 11 heavy metals (Pb, Cd, Al, Mn, Cu, Zn, Fe, As, Ni, Cr, and Ag) in 30 samples from Kuantan beach sediment zones (supratidal, intertidal, and subtidal) were determined using inductively coupled plasma optical emission spectrometry followed by contamination indexes, Pearson's correlation analysis, and principal component analysis (PCA). The results indicated that Cd, As, Ni, and Ag values in beach sediment zones were significantly higher compared to background values.
View Article and Find Full Text PDFOne of the most prominent challenges related to the management of diabetes is a diabetic foot ulcer (DFU). It has been noted that > 50% of ulcers become clinically infected in diabetic patients, and up to 15-25% of diabetic patients may acquire DFU in their lifetime. DFU treatment is complicated for immune-compromised individuals and has a low success rate.
View Article and Find Full Text PDFUnlabelled: The COVID-19 pandemic originated in Wuhan in 2019 due to a novel SARS-COV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) responsible for the massive number of deaths across the globe. So far, several vaccines have been developed using highly antigenic Spike protein and authorized for emergency use, reducing the severity of the infection. Nonetheless, the virus continues to evolve through multiple mutations, resulting in numerous variants with enhanced transmission that evade the vaccine-induced immune response.
View Article and Find Full Text PDFStudies have reported the potential role of Boswellic acids (BAs), bioactive pentacyclic triterpenes from (BS), in treating rheumatoid arthritis (RA). However, poor water solubility and limited oral absorption are restricting factors for its better therapeutic efficacy. Based on these assumptions, the current study aimed to develop naturosomal delivery of BAs to boost their extremely low bioavailability, colloidal stability, and water solubility.
View Article and Find Full Text PDFIn diabetes and its associated pathologies, glycation, α-amylase, and α-glucosidase play crucial roles. This study introduces a novel tripeptide, RWW, designed to target glycation and key enzymes in diabetes management. Using in silico methods, RWW was optimized to interact with the glycation-prone Human serum albumin (HSA) sites, as well as inhibit α-amylase and α-glucosidase.
View Article and Find Full Text PDFThe rise of β-Lactamase mediated antibiotic resistance is a major concern for public health; hence, there is an urgent need to find new treatment approaches. Structure-guided drug repurposing offers a promising approach to swiftly deliver essential therapeutics in the fight against escalating antibiotic resistance. Here, a structure-guided virtual screening approach was used involving drug profiling, molecular docking, and molecular dynamics (MD) simulation to identify existing drugs against β-Lactamase-associated drug resistance.
View Article and Find Full Text PDFAt present, a major effort in biophysical studies has been paid towards exploring the interactions and release of therapeutic payloads to the specific site leaving behind healthy cells unaffected and hence, lower the drug-induced toxicity. For the purpose, interaction of β-bound CUR with calf thymus DNA (ctDNA) has been examined intensely using a series of biophysical methods like absorption, steady state fluorescence emission, and circular dichroism together with molecular docking study. The experimental analysis divulge that CUR interacts with both β-CD (although with different molar ratio) and DNA.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
November 2024
The binding interactions between bovine serum albumin (BSA) and three pyridine derivatives, i.e., 2-(5-bromopyridin-3-yl) acetic acid (L1), 3-bromo-5-nitropyridine (L2) and 2-chloro-4-nitropyridine (L3), have been carried out using UV-Vis and fluorescence spectroscopic methods.
View Article and Find Full Text PDFLuminescence
November 2024
The research aims to elucidate how drug interactions affect the activity of L-asparaginase (L-ASNase), an essential enzyme in cancer treatment, especially for acute lymphoblastic leukemia (ALL). Understanding these interactions is crucial for optimizing treatment effectiveness and reducing adverse effects. This study explores the intricate molecular interactions and structural dynamics of L-ASNase upon binding with colchicine.
View Article and Find Full Text PDFOral squamous cell carcinoma (OSCC) is a disease of significant concern with higher mortality rates. Conventional treatment approaches have several drawbacks, leading to the opening of new research avenues in the field of nanoparticle-based cancer therapeutics. The study aimed at the synthesis of gold nanoparticles (Pm-AuNPs) from the aqueous bark extract of , followed by its characterization and anticancer evaluation against OSCC.
View Article and Find Full Text PDFDepression and Parkinson's disease (PD) are devastating psychiatric and neurological disorders that require the development of novel therapeutic interventions. Drug repurposing targeting predefined pharmacological targets is a widely use approach in modern drug discovery. Monoamine oxidase B (MAO-B) is a critical protein implicated in Depression and PD.
View Article and Find Full Text PDFIn this study, we aimed to explore the interaction mechanism between bovine serum albumin (BSA) and a Schiff base compound derived from 2,4-dinotrophenyl hydrazine (L) using various spectroscopic techniques. The interaction between BSA and synthesizing molecule can provide insights into binding affinity, conformational changes and potential applications in drug delivery or biochemistry. The interaction between BSA and L was studied by using UV-Vis and fluorescence titration analysis.
View Article and Find Full Text PDFYohimbine is a potent bioactive indole alkaloid, isolated from a variety of biological sources and has long been used as a natural stimulant and aphrodisiac, particularly to treat erectile dysfunction. However, some literature also points toward its anticancer effect in different experimental models. The current study aimed to address a clinical concern on the therapeutic utilization of yohimbine as a repurposed drug.
View Article and Find Full Text PDFUnlabelled: With the aim of finding the plant-derived allosteric inhibitors of caspase-3/-7, we conducted computational investigations of bioactive compounds present in various berry fruits. In a molecular docking study, perulactone demonstrated excellent binding affinity scores of -12.1 kcal/mol and -9.
View Article and Find Full Text PDFL-asparaginase is a remarkable antineoplastic enzyme used in medicine for the treatment of acute lymphoblastic leukemia (ALL) as well as in food industries. In this work, the L-asparaginase-II gene from Salmonella paratyphi was codon-optimized, cloned, and expressed in E. coli as a His-tag fusion protein.
View Article and Find Full Text PDFContext: The study undertakes a comparative analysis of four distinct semi-fluorinated chiral Organic Active Ferroelectric Liquid Crystals (OAFLCs). The comparative analysis of the compounds is done by using various parameters, including thermodynamic, non-linear optical, electrical, atomic charge distribution, and atomic orientations. We use optimization algorithms to look at chemical reactivity, electrical properties, intermolecular interactions, and static hyperpolarizability.
View Article and Find Full Text PDFEsophageal squamous cell carcinoma (ESCC) accounts for over 90% of all esophageal tumors. However, the molecular mechanism underlying ESCC development and prognosis remains unclear, and there are still no effective molecular biomarkers for diagnosing or predicting the clinical outcome of patients with ESCC. Here, we used bioinformatics analysis to identify potential biomarkers and therapeutic targets for ESCC.
View Article and Find Full Text PDFis the causative agent of the sexually transmitted disease gonorrhea. The increasing prevalence of this disease worldwide, the rise of antibiotic-resistant strains, and the difficulties in treatment necessitate the development of a vaccine, highlighting the significance of preventative measures to control and eradicate the infection. Currently, there is no widely available vaccine, partly due to the bacterium's ability to evade natural immunity and the limited research investment in gonorrhea compared to other diseases.
View Article and Find Full Text PDFDeveloping new therapeutic strategies to target specific molecular pathways has become a primary focus in modern drug discovery science. Fibroblast growth factor receptor 2 (FGFR2) is a critical signaling protein involved in various cellular processes and implicated in numerous diseases, including cancer. Existing FGFR2 inhibitors face limitations like drug resistance and specificity issues.
View Article and Find Full Text PDFAlzheimer's disease (AD) poses a significant health challenge worldwide, affecting millions of individuals, and projected to increase further as the global population ages. Current pharmacological interventions primarily target acetylcholine deficiency and amyloid plaque formation, but offer limited efficacy and are often associated with adverse effects. Given the multifactorial nature of AD, there is a critical need for novel therapeutic approaches that simultaneously target multiple pathological pathways.
View Article and Find Full Text PDFHistone deacetylase 3 (HDAC3) is a member of the histone deacetylase family that has emerged as a crucial target in the quest for novel therapeutic interventions against various complex diseases, including cancer. The repositioning of FDA-approved drugs presents a promising avenue for the rapid discovery of potential HDAC3 inhibitors. In this study, we performed a structure-based virtual screening of FDA-approved drugs obtained from DrugBank.
View Article and Find Full Text PDF