Publications by authors named "Mohd Reusmaazran Yusof"

In the past decade, electrospun nanofibers made of biodegradable polymers have been used for different biomedical applications due to their flexible features in terms of surface area to volume ratio, pores, and fiber size, as well as their highly tunable surface properties. Recently, interest is growing in the use of supramolecular structures in combination with electrospun nanofibers for the fabrication of bioactive platforms with improved in vitro responses, to be used for innovative therapeutic treatments. Herein, sulfonatocalix[4]arene (SCX4) was synthesized from --butyl-calix[4]arene and embedded in electrospun nanofibers made of polycaprolactone (PCL) and gelatin (GEL).

View Article and Find Full Text PDF

Nanofibrous materials produced by electrospinning processes have potential advantages in tissue engineering because of their biocompatibility, biodegradability, biomimetic architecture, and excellent mechanical properties. The aim of the current work is to study the influence of the electron beam on the poly L-lactide acid/ carboxy-methyl starch/β-tricalcium phosphate (PLLA/CMS/β-TCP) composite nanofibers for potential applications as bone-tissue scaffolds. The composite nanofibers were prepared by electrospinning in the combination of 5% / carboxy-methyl starch (CMS) and 0.

View Article and Find Full Text PDF

Background: The urinary tract can be affected by both congenital abnormalities as well as acquired disorders, such as cancer, trauma, infection, inflammation, and iatrogenic injuries, all of which may lead to organ damage requiring eventual reconstruction. As a gold standard, gastrointestinal segment is used for urinary bladder reconstruction. However, one major problem is that while bladder tissue prevents reabsorption of specific solutes, gastrointestinal tissue actually absorbs them.

View Article and Find Full Text PDF

A natural polymer of carboxymethyl starch (CMS) was used in combination with the inorganic mineral of β-Tricalcium Phosphate (β-TCP) and Poly l-lactide (PLLA) to prepare composite nanofibers with the potential to be used as a biomedical membrane. β-TCP contents varied in the range of 0.25% to 1% in the composition of PLLA and CMS.

View Article and Find Full Text PDF

Fabrication of composite scaffolds is one of the strategies proposed to enhance the functionality of tissue-engineered scaffolds for improved tissue regeneration. By combining multiple elements together, unique biomimetic scaffolds with desirable physical and mechanical properties can be tailored for tissue-specific applications. Despite having a highly porous structure, the utility of electrospun fibers (EF) as scaffold is usually hampered by their insufficient mechanical strength.

View Article and Find Full Text PDF

Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO).

View Article and Find Full Text PDF

Background: Autologous nerve grafts to bridge nerve gaps pose various drawbacks. Nerve tissue engineering to promote nerve regeneration using artificial neural conduits has emerged as a promising alternative.

Objectives: To develop an artificial nerve conduit using collagen-coated polylactic-glycolic acid (PLGA) and to analyse the survivability and propagating ability of the neuro-differentiated human mesenchymal stem cells in this conduit.

View Article and Find Full Text PDF

Background: Adipose tissue provides an abundant source of multipotent cells, which represent a source of cell-based regeneration strategies for urinary bladder smooth muscle repair. Our objective was to confirm that adipose-derived stem cells (ADSCs) can be differentiated into smooth muscle cells.

Methods: In this study, adipose tissue samples were digested with 0.

View Article and Find Full Text PDF

The chief obstacle for reconstructing the bladder is the absence of a biomaterial, either permanent or biodegradable, that will function as a suitable scaffold for the natural process of regeneration. In this study, polylactic-co-glycolic acid (PLGA) plus collagen or fibrin was evaluated for its suitability as a scaffold for urinary bladder construct. Human adipose-derived stem cells (HADSCs) were cultured, followed by incubation in smooth muscle cells differentiation media.

View Article and Find Full Text PDF