Publications by authors named "Mohd Nizar Hamidon"

Carbon nanotube-Yttrium iron garnet (CNT-YIG) nanohybrid has been successfully synthesized using chemical vapor deposition (CVD) with yttrium iron garnet (YIG) nanopowders as catalyst, ethanol as carbon stock, and argon as carrier gas. Carbon nanotube (CNT) was observed to have grown from the YIG nanopowders with bamboo-like structures of CNT at a synthesis temperature of 900 °C. FESEM and RAMAN characterization indicated that the CNT-YIG nanohybrid exhibited the growth of bamboo-like CNT with high graphitization.

View Article and Find Full Text PDF

The transmission mechanism of artificial flapping-wing drones generally needs low weight and the fewest interconnecting components, making their development challenging. The four-bar Linkage mechanism for flapping actuation has generally been used till now with complex and heavy connecting designs, but our proposed novel perpendicularly organized 3-cylindrical joint mechanism is designed to be unique and lighter weight with smooth functioning performance. The proposed prototype transforms the rotary motion of the motor into a specific angle of flapping movement, where the dimensions and specifications of the design components are proportional to the obtained flapping angle.

View Article and Find Full Text PDF

Insect RoboFlyers are interesting and active focuses of study but producing high-quality flapping robots that replicate insect flight is challenging., due to the dual requirement of both a sophisticated transmission mechanism with light weight and minimal intervening connections. This innovative mechanism was created to address the need for a producible structure that is small in size, small in mass, and has reduced design linkages.

View Article and Find Full Text PDF

A highly sensitive silicon nanowire (SiNW)-based sensor device was developed using electron beam lithography integrated with complementary metal oxide semiconductor (CMOS) technology. The top-down fabrication approach enables the rapid fabrication of device miniaturization with uniform and strictly controlled geometric and surface properties. This study demonstrates that SiNW devices are well-aligned with different widths and numbers for pH sensing.

View Article and Find Full Text PDF

The dielectrophoresis (DEP) method is used to fabricate sensor devices by assembling and aligning carbon nanotubes (CNTs) across electrode structures. The challenges of the method increase as the gap width between the electrodes increases. In this work, a novel DEP setup is proposed to reduce the resistance mismatch in manufacturing carbon nanotube-based sensors.

View Article and Find Full Text PDF

Surfactants such as sodium dodecyl sulfate (SDS) are used to improve the dispersity of carbon nanotubes (CNTs) in aqueous solutions. The surfactant concentration in CNT solutions is a critical factor in the dielectrophoretic (DEP) manipulation of CNTs. A high surfactant concentration causes a rapid increase in the solution conductivity, while a low concentration results in undesirably large CNT bundles within the solution.

View Article and Find Full Text PDF

The assembly of carbon nanotubes (CNTs) across planner electrodes using dielectrophoresis (DEP) is one of the standard methods used to fabricate CNT-based devices such as sensors. The medium drag velocity caused by electrokinetic phenomena such as electrothermal and electroosmotic might drive CNTs away from the deposition area. This problem becomes critical at large-scale electrode structures due to the high attenuation of the DEP force.

View Article and Find Full Text PDF

A new approach through heat treatment has been attempted by establishing defects by the process of quenching towards electrical and magnetic properties in the nickel zinc ferrite (NiZnFeO) sample. The measured property values in permeability and hysteresis characteristic gave their recovery behaviour in which the values, after quenching were recovered after undergoing the annealing. Interestingly, a different trend observed in the permittivity value whereas the value was increased after quenching and subsequently recovered after annealing.

View Article and Find Full Text PDF

Oil palm is one of the key industries highly observed in Malaysia, due to its high demand both whether locally or internationally. The oil extraction rate (OER) in palm oil production is used as an element to identify the performance of the mills, estates and producers. In view of this, there are specific instrument or sensor needs to be implemented at the mills especially during the reception of fresh fruit bunches (FFB) transported from the field for oil content processing.

View Article and Find Full Text PDF

There are many factors affecting oil extraction rate (OER) but a large contributor to high national OER is by processing good-quality fresh fruit bunches (FFB) at the mills. The current practice for grading oil palm fruit bunches in mills is using human graders for visual inspection, which can lead to repeated mistakes, inconsistent evaluation results, and many other related losses. This study aims to develop a fruit maturity sensor that can detect oil palm fruit maturity grade and send indication to the user whether to accept or reject the bunches.

View Article and Find Full Text PDF

This paper describes the development of an integrated system using a dry film resistant (DFR) microfluidic channel consisting of pulsed field dielectrophoretic field-flow-fractionation (DEP-FFF) separation and optical detection. The prototype chip employs the pulse DEP-FFF concept to separate the cells ( and ) from a continuous flow, and the rate of release of the cells was measured. The separation experiments were conducted by changing the pulsing time over a pulsing time range of 2⁻24 s and a flow rate range of 1.

View Article and Find Full Text PDF

High demand of semiconductor gas sensor works at low operating temperature to as low as 100 °C has led to the fabrication of gas sensor based on TiO₂ nanoparticles. A sensing film of gas sensor was prepared by mixing the sensing material, TiO₂ (P25) and glass powder, and B₂O₃ with organic binder. The sensing film was annealed at temperature of 500 °C in 30 min.

View Article and Find Full Text PDF

Haptic sensors are essential devices that facilitate human-like sensing systems such as implantable medical devices and humanoid robots. The availability of conducting thin films with haptic properties could lead to the development of tactile sensing systems that stretch reversibly, sense pressure (not just touch), and integrate with collapsible. In this study, a nanocomposite based hemispherical artificial fingertip fabricated to enhance the tactile sensing systems of humanoid robots.

View Article and Find Full Text PDF

Numerous applications of artificial olfaction resulting from research in many branches of sciences have caused considerable interest in the enhancement of these systems. In this paper, we offer an architecture which is suitable for critical applications, such as medical diagnosis, where reliability and precision are deemed important. The proposed architecture is able to tolerate failures in the sensors of the array.

View Article and Find Full Text PDF

In this paper, a comprehensive study has been made on the detection of free fatty acids (FFAs) in palm oil via an optical technique based on enzymatic aminolysis reactions. FFAs in crude palm oil (CPO) were converted into fatty hydroxamic acids (FHAs) in a biphasic lipid/aqueous medium in the presence of immobilized lipase. The colored compound formed after complexation between FHA and vanadium (V) ion solution was proportional to the FFA content in the CPO samples and was analyzed using a spectrophotometric method.

View Article and Find Full Text PDF

A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW) resonators with resonance frequencies of 433.

View Article and Find Full Text PDF

This paper presents the design and development of a planar Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator (SRR) for microwave sensors that operates at a resonance frequency around 5 GHz. The sensor consists of a microstrip transmission line loaded with two elements of rectangular SRR on both sides. The proposed metamaterial sensors were designed and fabricated on Rogers RT5880 substrate having dielectric constant of 2.

View Article and Find Full Text PDF

Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.

View Article and Find Full Text PDF

This paper examines the impact of two important geometrical parameters, namely the thickness and source/drain extensions on the performance of low doped p-type double lateral gate junctionless transistors (DGJLTs). The three dimensional Technology Computer-Aided Design simulation is implemented to calculate the characteristics of the devices with different thickness and source/drain extension and based on that, the parameters such as threshold voltage, transconductance and resistance in saturation region are analyzed. In addition, simulation results provide a physical explanation for the variation of device characteristics given by the variation of geometric parameters, mainly based on investigation of the electric field components and the carries density variation.

View Article and Find Full Text PDF

A gas sensor array was developed in a 10 × 10 mm(2) space using Screen Printing and Pulse Laser Ablation Deposition (PLAD) techniques. Heater, electrode, and an insulator interlayer were printed using the screen printing method on an alumina substrate, while tin oxide and platinum films, as sensing and catalyst layers, were deposited on the electrode at room temperature using the PLAD method, respectively. To ablate SnO(2) and Pt targets, depositions were achieved by using a 1,064 nm Nd-YAG laser, with a power of 0.

View Article and Find Full Text PDF

Research into surface acoustic wave (SAW) devices began in the early 1970s and led to the development of high performance, small size, and high reproducibility devices. Much research has now been done on the application of such devices to consumer electronics, process monitoring, and communication systems. The use of novel materials, such as gallium phosphate (GaPO4), extends the operating temperature of the elements.

View Article and Find Full Text PDF