Publications by authors named "Mohd Helmi Sani"

Bacterial cellulose (BC) is a novel biocompatible polymeric biomaterial with a wide range of biomedical uses, like tissue engineering (TE) scaffolds, wound dressings, and drug delivery. Although BC lacks good cell adhesion due to limited functionality, its tunable surface chemistry still holds promise. Here, hydroxyapatite (HA) was incorporated into a citrate-modified BC (MBC) using the biomimetic synthesis in simulated body fluid (SBF).

View Article and Find Full Text PDF

Prior research has emphasized the potential of microalgae in biodiesel production, driven by their ability to replace fossil fuels. However, the significant costs associated with microalgae cultivation present a major obstacle to scaling up production. This study aims to develop an eco-friendly microalgae cultivation system by integrating carbon dioxide from flue gas emissions with an affordable photobioreactor, providing a sustainable biomass production.

View Article and Find Full Text PDF

Bacterial cellulose (BC) has gained attention among researchers in materials science and bio-medicine due to its fascinating properties. However, BC's fibre collapse phenomenon (i.e.

View Article and Find Full Text PDF

In this study, single, mix, multilayer Polyvinyl alcohol (PVA) electrospun nanofibers with epidermal growth factor (EGF) and fibroblast growth factor (FGF) were fabricated and characterized as a biological wound dressing scaffolds. The biological activities of the synthesized scaffolds have been verified by in vitro and in vivo studies. The chemical composition finding showed that the identified functional units within the produced nanofibers (O-H and N-H bonds) are attributed to both growth factors (GFs) in the PVA nanofiber membranes.

View Article and Find Full Text PDF

Thousands of prokaryotic genera have been published, but methodological bias in the study of prokaryotes is noted. Prokaryotes that are relatively easy to isolate have been well-studied from multiple aspects. Massive quantities of experimental findings and knowledge generated from the well-known prokaryotic strains are inundating scientific publications.

View Article and Find Full Text PDF

Type I pullulanase from Anoxybacillus sp. SK3-4 (PulASK) is an unusual debranching enzyme that specifically hydrolyzes starch α-1,6 linkages at long branches producing oligosaccharides (≥G8), but is nonreactive against short branches; thus, incapable of producing reducing sugars (G1-G7). We report on the effects of both single and co-immobilization of PulASK on product specificity.

View Article and Find Full Text PDF

α-Amylase from Anoxybacillus sp. SK3-4 (ASKA) is a thermostable enzyme that produces a high level of maltose from starches. A truncated ASKA (TASKA) variant with improved expression and purification efficiency was characterized in an earlier study.

View Article and Find Full Text PDF