The concern about coconut shell disposal and natural fine aggregate depletion has prompted researchers to utilize coconut shell as aggregate in recent years. However, the majority of the present literature has focused on utilizing coconut shell as a coarse aggregate replacement in concrete via the traditional method. In this study, concrete incorporating coconut shell as a fine aggregate replacement (10-100%) was evaluated using permeability and water absorption tests in a systematic way.
View Article and Find Full Text PDFExposing concrete to high temperatures leads to harmful effects in its mechanical and microstructural properties, and ultimately to total failure. In this sense, various types of waste materials are exploited not only to tackle serious environmental issues but also to enhance the thermal stability of concrete exposed to elevated temperatures. Furthermore, nanomaterials have been incorporated in concrete as admixtures to reduce the thermal degradation of concrete due to exposure to high temperatures.
View Article and Find Full Text PDFExcessive accumulation of waste materials has presented a serious environmental problem on a global scale. This has prompted many researchers to utilise agricultural, industrial, and by-product waste materials as the replacement of aggregate in the concrete matrix. In this present study, the prediction and optimisation of coconut shell (CA) content as the replacement of fine aggregate were evaluated based on the mechanical properties of the concrete (M30).
View Article and Find Full Text PDFThis study investigated the influence of coal bottom ash (CBA) on the concrete properties and evaluate the effects of combined exposure of sulphate and chloride conditions on the concrete containing CBA. During concrete mixing, cement was replaced with CBA by 10% of cement weight. Initially, concrete samples were kept in normal water for 28 days.
View Article and Find Full Text PDFImage analysis techniques are gaining popularity in the studies of civil engineering materials. However, the current established image analysis methods often require advanced machinery and strict image acquisition procedures which may be challenging in actual construction practices. In this study, we develop a simplified image analysis technique that uses images with only a digital camera and does not have a strict image acquisition regime.
View Article and Find Full Text PDFThis research aims to assess the sustainability of the most common earth-retaining walls (Gravity Walls and Cantilever Walls) in terms of environmental impacts, economic issues, and their combination. Gravity walls observed in this study consist of Gabion Wall, Crib Wall, and Rubble Masonry Wall, while Cantilever Walls include Reinforced Concrete Wall. Six different criteria were taken into account, including global warming potential, fossil depletion potential, eutrophication potential, acidification potential, human toxicity potential, and cost.
View Article and Find Full Text PDF