Publications by authors named "Mohd Hasbi ab Rahim"

The conversion of lignin into bioactive compounds through selective organic synthesis methods represents a promising frontier in the pursuit of sustainable raw materials and green chemistry. This review explores the versatility of lignin-derived bioactive compounds, ranging from their application in drug discovery to their role in the development of biodegradable materials. Despite notable advancements, the synthesis routes and yields of highly bioactive molecules from lignin still require further exploration and improvement.

View Article and Find Full Text PDF

In this research, a magnetic reusable nickel nanoparticle (NiNPs) supporting materials were prepared for cellulase enzyme immobilization. The immobilized cellulase showed high activity recovery, large & fast immobilization capacity and improved pH & temperature tolerance. The excellent stability and reusability enabled the immobilized cellulase to retain 84% of its initial activity after ten cycles.

View Article and Find Full Text PDF
Article Synopsis
  • * The research highlights that the addition of curcumin not only serves as a drug but also enhances the material's hydrophilicity, leading to improved swelling and water interaction properties due to hydrogen bonding among components.
  • * Drug-release tests showed a cumulative release of approximately 60% and 78% for two curcumin compositions, and in-vitro studies indicated that these scaffolds promote better cell proliferation and actin expression in fibroblasts, which is beneficial for wound healing
View Article and Find Full Text PDF

Over the past decades, research efforts are being devoted into utilizing the biomass waste as a major source of green energy to maintain the economic, environmental, and social sustainability. Specifically, there is an emerging consensus on the significance of glycerol (an underutilised waste from biodiesel industry) as a cheap, non-toxic, and renewable source for valuable chemicals synthesis. There are numerous methods enacted to convert this glycerol waste to tartronic acid, mesoxalic acid, glyceraldehyde, dihydroxyacetone, oxalic acid and so on.

View Article and Find Full Text PDF

Biomass and lipid production by the marine diatom Chaetoceros affinis were characterized under continuous light with aeration. Media based on palm oil mill effluent (POME; 10, 20 and 30 % v/v in distilled water) were used together with a standard control medium. The maximum biomass concentration on day 12 of batch cultures in control medium was 821 ± 71 mg L.

View Article and Find Full Text PDF

Far-flung evolution in tissue engineering enabled the development of bioactive and biodegradable materials to generate biocomposite nanofibrous scaffolds for bone repair and replacement therapies. Polymeric bioactive nanofibers are to biomimic the native extracellular matrix (ECM), delivering tremendous regenerative potentials for drug delivery and tissue engineering applications. It's been known from few decades that Zinc oxide (ZnO) nanoparticles are enhancing bone growth and providing proliferation of osteoblasts when incorporated with hydroxyapatite (HAp).

View Article and Find Full Text PDF

Aim: Atherosclerosis is a common cardiovascular disease causing medical problems globally leading to coronary artery bypass surgery. The present study is to fabricate core/shell nanofibers to encapsulate VEGF for the differentiation of mesenchymal stem cells (MSCs) into smooth muscle cells to develop vascular grafts.

Materials & Methods: The fabricated core/shell nanofibers contained polycaprolactone/gelatin as the shell, and silk fibroin/VEGF as the core materials.

View Article and Find Full Text PDF

This article reports the synthesis of cuprous oxide (CuO) and cupric oxide (CuO) nanowires by controlling the calcination environment of electrospun polymeric nanowires and their charge storage properties. The CuO nanowires showed higher surface area (86 m g) and pore size than the CuO nanowires (36 m g). Electrochemical analysis was carried out in 6 M KOH, and both the electrodes showed battery-type charge storage mechanism.

View Article and Find Full Text PDF

The partial oxidation of methane to methanol presents one of the most challenging targets in catalysis. Although this is the focus of much research, until recently, approaches had proceeded at low catalytic rates (<10 h(-1)), not resulted in a closed catalytic cycle, or were unable to produce methanol with a reasonable selectivity. Recent research has demonstrated, however, that a system composed of an iron- and copper-containing zeolite is able to catalytically convert methane to methanol with turnover frequencies (TOFs) of over 14,000 h(-1) by using H(2)O(2) as terminal oxidant.

View Article and Find Full Text PDF

The reaction of glycerol with urea to form glycerol carbonate is mostly reported in the patent literature and to date there have been very few fundamental studies of the reaction mechanism. Furthermore, most previous studies have involved homogeneous catalysts whereas the identification of heterogeneous catalysts for this reaction would be highly beneficial. This is a very attractive reaction that utilises two inexpensive and readily available raw materials in a chemical cycle that overall, results in the chemical fixation of CO(2).

View Article and Find Full Text PDF

Selective oxidation of primary carbon-hydrogen bonds with oxygen is of crucial importance for the sustainable exploitation of available feedstocks. To date, heterogeneous catalysts have either shown low activity and/or selectivity or have required activated oxygen donors. We report here that supported gold-palladium (Au-Pd) nanoparticles on carbon or TiO(2) are active for the oxidation of the primary carbon-hydrogen bonds in toluene and related molecules, giving high selectivities to benzyl benzoate under mild solvent-free conditions.

View Article and Find Full Text PDF