This present study investigated how heat treatment affects the mechanical properties of 3D-printed black carbon fiber HTPLA by manipulating two parameters: heating temperature and holding time. The mechanical properties of 3D-printed black carbon fiber HTPLA components are crucial for assessing their structural integrity and performance. The shrinkage and dimensional accuracy of the 3D-printed parts were also explored using a vernier caliper.
View Article and Find Full Text PDFFused deposition modeling (FDM) is currently used in several fields, such as architecture, manufacturing, and medical applications. FDM was initially developed to produce and create prototypes, but the expense appears excessive for producing final products. Nevertheless, in this day and age, engineers have developed a low-cost 3D printer.
View Article and Find Full Text PDFTogether, 316L steel, magnesium-alloy, Ni-Ti, titanium-alloy, and cobalt-alloy are commonly employed biomaterials for biomedical applications due to their excellent mechanical characteristics and resistance to corrosion, even though at times they can be incompatible with the body. This is attributed to their poor biofunction, whereby they tend to release contaminants from their attenuated surfaces. Coating of the surface is therefore required to mitigate the release of contaminants.
View Article and Find Full Text PDF