The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations.
View Article and Find Full Text PDFBone is a dynamic tissue that can always regenerate itself through remodeling to maintain biofunctionality. This tissue performs several vital physiological functions. However, bone scaffolds are required for critical-size damages and fractures, and these can be addressed by bone tissue engineering.
View Article and Find Full Text PDFProtein-based wound dressings have garnered increasing interest in recent years owing to their distinct physical, chemical, and biological characteristics. The intricate molecular composition of proteins gives rise to unique characteristics, such as exceptional biocompatibility, biodegradability, and responsiveness, which contribute to the promotion of wound healing. Wound healing is an intricate and ongoing process influenced by multiple causes, and it consists of four distinct phases.
View Article and Find Full Text PDFIn view of their exceptional approach, excellent inherent biocompatibility and biodegradability properties, and interaction with the local extracellular matrix, protein-based polymers have received attention in bone tissue engineering, which is a multidisciplinary field that repairs and regenerates fractured bones. Bone is a multihierarchical complex structure, and it performs several essential biofunctions, including maintaining mineral balance and structural support and protecting soft organs. Protein-based polymers have gained interest in developing ideal scaffolds as emerging biomaterials for bone fractured healing and regeneration, and it is challenging to design ideal bone substitutes as perfect biomaterials.
View Article and Find Full Text PDFWound healing is a critical but complex biological process of skin tissue repair and regeneration resulting from various systems working together at the cellular and molecular levels. Quick wound healing and the problems associated with traditional wound repair techniques are being overcome with multifunctional materials. Over time, this research area has drawn significant attention.
View Article and Find Full Text PDFTissue engineering is an advanced and potential biomedical approach to treat patients suffering from lost or failed an organ or tissue to repair and regenerate damaged tissues that increase life expectancy. The biopolymers have been used to fabricate smart hydrogels to repair damaged tissue as they imitate the extracellular matrix (ECM) with intricate structural and functional characteristics. These hydrogels offer desired and controllable qualities, such as tunable mechanical stiffness and strength, inherent adaptability and biocompatibility, swellability, and biodegradability, all crucial for tissue engineering.
View Article and Find Full Text PDF