Publications by authors named "Mohd F Azam"

On 3 October 2023, a multihazard cascade in the Sikkim Himalaya, India, was triggered by 14.7 million m of frozen lateral moraine collapsing into South Lhonak Lake, generating an ~20 m tsunami-like impact wave, breaching the moraine, and draining ~50 million m of water. The ensuing Glacial Lake Outburst Flood (GLOF) eroded ~270 million m of sediment, which overwhelmed infrastructure, including hydropower installations along the Teesta River.

View Article and Find Full Text PDF

Recent research has provided crucial insights on regional heatwaves, including their causal mechanisms and changes under global warming. However, detailed research on global-scale spatially compound heatwaves (SCHs) (concurrent heatwaves over multiple regions) is lacking. Here, we find statistically significant teleconnections in heatwaves and show that the frequency of global-scale SCHs and their areal extent have increased significantly, which has led to 50 % increase in the population exposed to extreme heat stresses in the two most recent decades.

View Article and Find Full Text PDF

Understanding the response of Himalayan-Karakoram (HK) rivers to climate change is crucial for ~1 billion people who partly depend on these water resources. Policy-makers tasked with sustainable water resources management require an assessment of the rivers' current status and potential future changes. We show that glacier and snow melt are important components of HK rivers, with greater hydrological importance for the Indus basin than for the Ganges and Brahmaputra basins.

View Article and Find Full Text PDF

Melting snow and glacier ice in the Himalaya forms an important source of water for people downstream. Incoming longwave radiation (LW) is an important energy source for melt, but there are only few measurements of LW at high elevation. For the modelling of snow and glacier melt, the LW is therefore often represented by parameterizations that were originally developed for lower elevation environments.

View Article and Find Full Text PDF

Glaciers in the Himalaya-Karakoram (HK) are critical for ensuring water-security of a large fraction of world's population that is vulnerable to climate impacts. However, the sensitivity of HK glaciers to changes in meteorological forcing remains largely unknown. We analyzed modelled interannual variability of mass balance (MB) that is validated against available observations, to quantify the sensitivity of MB to meteorological factors over the HK.

View Article and Find Full Text PDF