Chicken sausages included with three different quantities of banana () peel powder. The technological properties (cooking yield, texture, water-holding capacity, color, rheology, and texture), composition, and sensory acceptability were assessed. In storage study, lipid oxidation of the best formulation from the sensory score was evaluated.
View Article and Find Full Text PDFPhytosterols (PSs) are insoluble in water and poorly soluble in oil, which hampers their potential as cholesterol level regulator in human. To mitigate this problem, monoglycerides (MGs) were used to modulates the crystallization behavior of PSs. Therefore, the understanding on mixing behavior provides the insight into different aspects of crystallization and the resultant effects.
View Article and Find Full Text PDFMonoglycerides (MGs) and phytosterols (PS) are known to form firm oleogels with liquid oil. However, the oleogels are prone to undergo polymorphic transition over time that lead to crystals' aggregation thus, compromises physical properties. Thus, we combined MGs with PS to control the crystallization and modify the morphology of the combination oleogels, as both components are reported to interact together.
View Article and Find Full Text PDFIn order to modify the self-assembly of sucrose esters (SEs) in sunflower oil, we added sunflower lecithin (SFL) as co-surfactant. It is hypothesized that SFL modifies the self-assembly of SEs by interrupting the extensive hydrogen bonding between SEs monomers. The addition of SFL into SEs induced gelation of the mixed surfactant system oleogels at all studied ratios.
View Article and Find Full Text PDFOil structuring using food-approved polymers is an emerging strategy and holds significant promise in the area of food and nutrition. In the current study, edible oleogels (containing >97 wt% of sunflower oil) were prepared using a combination of water soluble food polymers (methylcellulose and xanthan gum) and further evaluated for potential application as a shortening alternative. Microstructure studies (including cryo-SEM) and rheology measurements were conducted to gain more insights into the properties of these new types of oleogels.
View Article and Find Full Text PDFThe preparation and characterization of oleogels structured by using a combination of a surface-active and a non-surface-active polysaccharide through an emulsion-templated approach is reported. Specifically, the oleogels were prepared by first formulating a concentrated oil-in-water emulsion, stabilized with a combination of cellulose derivatives and xanthan gum, followed by the selective evaporation of the continuous water phase to drive the network formation, resulting in an oleogel with a unique microstructure and interesting rheological properties, including a high gel strength, G'>4000 Pa, shear sensitivity, good thixotropic recovery, and good thermostability.
View Article and Find Full Text PDF