Hypoxia-inducible factor 1-alpha (HIF-1α) is necessary for cells to adapt to low oxygen levels often present in the tumor microenvironment. HIF-1α triggers a transcriptional program that promotes invasion, angiogenesis, metabolic reprogramming, and cell survival when it is active in hypoxic environments. These processes together lead to the growth and spread of tumors.
View Article and Find Full Text PDFThis paper emphasizes the possible application of methyl orange reduction as a therapeutic technique, highlighting the potential of azo dye reduction in biomedical fields. The generally used azo dyes are toxic and carcinogenic; hence, they implicitly threaten the environment and health. The degradation of methyl orange, a famous example of azo dyes, is used to describe the degradation process for other azo dyes.
View Article and Find Full Text PDFPeroxiredoxins (Prxs) are members of the antioxidant enzymes necessary for every living object in the three domains of life and play critical roles in controlling peroxide levels in cells. This comprehensive literature review aims to elucidate the peroxidase activity of Prxs, examining their roles and significance for organisms across various taxa. Ironically, the primary role of the Prxs is the peroxidase activity, which comprises the reduction of hydrogen peroxide and other organic hydroperoxides and decreases the risk of oxidative damage in the cells.
View Article and Find Full Text PDFThe element that causes hypoxia when the von Hippel-Lindau (VHL) protein is not functioning is hypoxia-inducible factor 1-alpha (HIF-1α), which is the essential protein linked to cell control under hypoxia. Consequently, in situations where cells are oxygen-deficient, HIF-1α carries out a variety of essential functions. Citations to relevant literature support the notion that HIF-1α regulates the mitochondrial and glycolytic pathways, as well as the transition from the former to the latter.
View Article and Find Full Text PDFOsmoprotectant osmolyte and nonsteroidal anti-inflammatory drug (NSAID) coadministration can work synergistically in cancer chemotherapy since most tumors are inflammatory and cancer cells experience osmotic stress. NSAIDs have been shown to inhibit cyclooxygenase (COX) enzymes, which in turn reduces prostaglandin synthesis and prevents inflammation. They also encourage cell death to prevent tumor growth and its spread to other tissues and prevent the construction of new blood vessels, which contributes to the growth of cancer.
View Article and Find Full Text PDFAs a nonsteroidal antiinflammatory drug, diclofenac (DCF) is used in the treatment of a variety of human ailments. It has already been reported that the use of this class of drugs for a longer duration is associated with numerous side effects such as cardiovascular implications, reno-medullary complications, etc. In the present study, the effect of DCF on the structure, stability, and function of lysozyme was studied.
View Article and Find Full Text PDFPeroxiredoxin 6 (Prdx6) is a unique enzyme among mammalian peroxiredoxins as it lacks resolving cysteine. It is found to be involved in number of different diseases including tumours and its expression level is highest in lungs as compared to other organs. It has been found that Prdx6 plays a significant role different metabolic diseases, ocular damage, neurodegeneration and male infertility.
View Article and Find Full Text PDF